• 제목/요약/키워드: P-Glycoprotein

검색결과 336건 처리시간 0.031초

Detection of Glycoproteins (B and D) and Thymidine Kinase Genes of Herpes simplex virus Type 2 Strain G

  • Kang, Hyun;Park, Jong-Kuk;Uh, Hong-Sun;Kim, Soo-Young;Lee, Hyung-Hoan
    • 대한바이러스학회지
    • /
    • 제29권2호
    • /
    • pp.99-105
    • /
    • 1999
  • BamHI restriction pattern and genomic library of Herpes simplex virus type 2 (HSV-2) strain G were constructed, and locations of the glycoproteins gB and gD, and tk genes on the fragments were detected by Southern blot analysis. HSV-2 genomic DNAs were cleaved into twenty-seven fragments by BamHI enzyme in the range of 0.72 to 15.08 (total 150.44 kb), which were cloned into the BamHI site of pBluescript SK(+) to construct genome library of the HSV-2. The library was named by the order of the fragment size from smallest one to largest one. HSV-2 glycoprotein gD gene was located in pHLA2-21 and pHLA2-22 recombinant plasmids, gB gene in pHLA2-24 plasmid, and tk gene in pHLA2-11 clone by Southern blot analysis.

  • PDF

흰쥐에서 모린이 니페디핀의 약물동태에 미치는 영향 (Effect of Morin on the Pharmacokinetics of Nifedipine in Rats)

  • 이종기;최준식
    • 약학회지
    • /
    • 제51권3호
    • /
    • pp.169-173
    • /
    • 2007
  • The aim of this study was to investigate the effect of morin on the pharmacokinetics of nifedipine in rats. The pharmacokinetic parameters of nifedipine were measured after the oral administration of nifedipine (5 mg/kg) in the presence or absence of morin (1.5, 7.5 and 15 mg/kg, respectively). Compared to the control groups, the presence of 7.5 mg/kg and 15 mg/kg of morin significantly (p<0.05) increased the area under the plasma concentration-time curve (AUC) of nifedipine by 48.5${\sim}$68.2%, and the peak concentration (C$_{max}$,) of nifedipine by 59.9~84.2%. The absolute bioavailability(AB%) of nifedipine was significantly (p<0.05) increased by 21.5${\sim}$24.5% compared to the control (14.5%). While there was no significant change in the time to reach the peak plasma concentration (T$_{max}$) and the terminal half-life (T$_{1/2}$) of nifedipine in the presence of morin. It might be suggested that morin altered disposition of nifedipine by inhibition of both the first-pass metabolism and p-glycoprotein (P-gp) efflux pump in the small intestine of rats. In conclusion, the presence of morin significantly enhanced the oral bioavailability of nifedipine, suggesting that concurrent use of morin or morin-containing dietary supplement with nifedipine should require close monitoring for potential drug interaction.

The impact of freeze-drying on the glycoproteomic profiles of human milk

  • Hahn, Won-Ho;Bae, Seong-Phil;Lee, Hookeun;Park, Jong-Moon;Park, Suyeon;Lee, Joohyun;Kang, Nam Mi
    • 분석과학
    • /
    • 제33권4호
    • /
    • pp.177-185
    • /
    • 2020
  • Human milk (HM) glycoproteins play important roles protecting infants against various pathogens. Recently, freezing HM is reported to affect some glycoproteins and freeze-drying is suggested as an alternative method. However, the effects of freeze-drying on HM glycoproteins were not evaluated yet. Six fresh HM samples were collected from three healthy mothers at 15 and 60th days of lactation from each mother. Each sample was divided into frozen and freeze-dried subgroups yielding totally 12 samples, and the glycoproteomic analysis was performed by liquid chromatography mass spectrometry. The results were compared between samples of 15 and 60th days of lactation, and before and after the freeze-drying. Totally, 203 glycoproteins were detected. The glycoprotein levels were not different between two groups of 15/60th day of lactation and before/after freeze-drying groups (P > 0.050). In addition, significant correlation of glycoprotein levels was found between the different lactation stages (r = 0.897, P < 0.001) and the status of freeze-drying (r = 0.887, P < 0.001) in a partial correlation analysis. As no significant change of HM glycoproteins was not found after the freeze-drying, we hope that introducing freeze-drying to HM banks is supported by the present study. This work was supported by the National Research Foundation (NRF) of Korea grant funded by the Korea government (MSIP) (No.2017R1D1A1B03034270; No.2020R1A2C1005082).

Synergistic Induction of iNOS by IFN-${\gamma}$ and Glycoprotein Isolated from Dioscorea batatas

  • Pham, Thi Thu Huong;Lee, Min Young;Lee, Kun Yeong;Chang, In Youp;Lee, Seog Ki;Yoon, Sang Pil;Lee, Dong-Cheol;Jeon, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권6호
    • /
    • pp.431-436
    • /
    • 2012
  • Dioscorea species continue to be used in traditional Chinese medicine, and represent a major source of steroid precursors for conventional medicine. In the previous study, We isolated glycoprotein (GDB) from Dioscorea batatas, characterized, and demonstrated immunostimulating activity in C57BL/6 mice. The aim of this study was to investigate the mechanism whereby GDB activates macrophages. Macrophages activation by GDB was investigated by analyzing the effects of GDB on nitric oxide (NO) production, iNOS expression, mitogen activated protein kinase (MAPK) phosphorylation, and transcription factor activation. In the presence of IFN-${\gamma}$, GDB strongly stimulated macrophages to express iNOS and produce NO. Furthermore, the activation of p38 was synergistically induced by GDB plus IFN-${\gamma}$, but SB203580 (a p38 inhibitor) inhibited GDB plus IFN-${\gamma}$-induced p38 activation. This study indicates that GDB is an important activator of macrophages. Furthermore, due to the critical role that macrophage activation plays in innate immune response, the activation effects of GDB on macrophages suggest that GDB may be a useful immunopotentiating agent.

Comparison of α1-Antitrypsin, α1-Acid Glycoprotein, Fibrinogen and NOx as Indicator of Subclinical Mastitis in Riverine Buffalo (Bubalus bubalis)

  • Guha, Anirban;Guha, Ruby;Gera, Sandeep
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권6호
    • /
    • pp.788-794
    • /
    • 2013
  • Mastitis set apart as clinical and sub clinical is a disease complex of dairy cattle, with sub clinical being the most important economically. Of late, laboratories showed interest in developing biochemical markers to diagnose sub clinical mastitis (SCM) in herds. Many workers reported noteworthy alternation of acute phase proteins (APPs) and nitric oxide, (measured as nitrate+nitrite = NOx) in milk due to intra-mammary inflammation. But, the literature on validation of these parameters as indicators of SCM, particularly in riverine milch buffalo (Bubalus bubalis) milk is inadequate. Hence, the present study focused on comparing several APPs viz. ${\alpha}_1$-anti trypsin, ${\alpha}_1$-acid glycoprotein, fibrinogen and NOx as indicators of SCM in buffalo milk. These components in milk were estimated using standardized analytical protocols. Somatic cell count (SCC) was done microscopically. Microbial culture was done on 5% ovine blood agar. Of the 776 buffaloes (3,096 quarters) sampled, only 347 buffaloes comprising 496 quarters were found positive for SCM i.e. milk culture showed growth in blood agar with $SCC{\geq}2{\times}10^5$ cells/ml of milk. The cultural examination revealed Gram positive bacteria as the most prevalent etiological agent. It was observed that ${\alpha}_1$-anti trypsin and NOx had a highly significant (p<0.01) increase in SCM milk, whereas, the increase of ${\alpha}_1$-acid glycoprotein in infected milk was significant (p<0.05). Fibrinogen was below detection level in both healthy and SCM milk. The percent sensitivity, specificity and accuracy, predictive values and likelihood ratios were calculated taking bacterial culture examination and $SCC{\geq}2{\times}10^5$ cells/ml of milk as the benchmark. Udder profile correlation coefficient was also used. Allowing for statistical and epidemiological analysis, it was concluded that ${\alpha}_1$-anti trypsin indicates SCM irrespective of etiology, whereas ${\alpha}_1$-acid glycoprotein better diagnosed SCM caused by gram positive bacteria. NOx did not prove to be a good indicator of SCM. It is recommended measuring both ${\alpha}_1$-anti trypsin and ${\alpha}_1$-acid glycoprotein in milk to diagnose SCM in buffalo irrespective of etiology.

Expression of the HSV-1 (F) Glycoprotein B Gene in Insect Cells Infected by HcNPV Recombinant

  • Cha, Soung-Chul;Kang, Hyun;Lee, Sook-Yeon;Park, Gap-Ju;Lee, Hyung-Hoan
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권3호
    • /
    • pp.355-362
    • /
    • 2000
  • The Herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) gene in the pHLA-21 plasmid was inserted into a baculovirus (Hyphantria cunea nuclear polyhedrosis virus) expression vector (lacZ-HcNPV) to construct a recombinant virus gB-HcNPV expressing gB. Spodoptera frugiperda cells infected with this recombinant virus synthesized and processed gB of approximately 120 kDa, which cross-reacted with the monoclonal antibody to gB. The recombinant gB was identified on the membrane of the insect cells using an immunofluorescence assay. Antibodies to this recombinant raised in mice recognize the viral gB and neutralized the infectivity of the HSV-1 in vitro. These results show that the gB gene has the potential to be expressed in insect cells. They also demonstrate that it is possible to produce a mature protein by gene transfer in eukaryotic cells, and indicate the utility of the lacZ-HcNPV-insect cell system for producing and characterizing eukaryotic proteins. Furthermore, the neutralizing antibodies would appear to protect mice against HSV. Accordingly, this particular recombinant protein may be useful in the development of a subunit vaccine.

  • PDF

Effect of TSHAC on Human Cytochrome P450 Activity, and Transport Mediated by P-Glycoprotein

  • Im, Yelim;Kim, Yang-Weon;Song, Im-Sook;Joo, Jeongmin;Shin, Jung-Hoon;Wu, Zhexue;Lee, Hye Suk;Park, Ki Hun;Liu, Kwang-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권12호
    • /
    • pp.1659-1664
    • /
    • 2012
  • TSAHC [4'-(p-toluenesulfonylamido)-4-hydroxychalcone] is a promising antitumorigenic chalcone compound, especially against TM4SF5 (four-transmembrane L6 family member 5)-mediated hepatocarcinoma. We evaluated the potential of TSAHC to inhibit the catalytic activities of nine cytochrome P450 isoforms and of P-glycoprotein (P-gp). The abilities of TSAHC to inhibit phenacetin O-deethylation (CYP1A2), coumarin 6-hydroxylation (CYP2A6), bupropion hydroxylation (CYP2B6), amodiaquine N-deethylation (CYP2C8), diclofenac 4-hydroxylation (CYP2C9), omeprazole 5-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1), and midazolam 1'-hydroxylation (CYP3A) were tested using human liver microsomes. The P-gp inhibitory effect of TSAHC was assessed by [$^3H$]digoxin accumulation in the LLCPK1-MDR1 cell system. TSAHC strongly inhibited CYP2C8, CYP2C9, and CYP2C19 isoform activities with $K_i$ values of 0.81, 0.076, and $3.45{\mu}M$, respectively. It also enhanced digoxin accumulation in a dose-dependent manner in the LLCPK1-MDR1 cells. These findings indicate that TSAHC has the potential to inhibit CYP2C isoforms and P-gp activities in vitro. TSAHC might be used as a nonspecific inhibitor of CYP2C isoforms based on its negligible inhibitory effect on other P450 isoforms such as CYP1A2, CYP2A6, CYP2B6, CYP2D6, CYP2E1, and CYP3A.

Blockade of P-Glycoprotein Decreased the Disposition of Phenformin and Increased Plasma Lactate Level

  • Choi, Min-Koo;Song, Im-Sook
    • Biomolecules & Therapeutics
    • /
    • 제24권2호
    • /
    • pp.199-205
    • /
    • 2016
  • This study aimed to investigate the in vivo relevance of P-glycoprotein (P-gp) in the pharmacokinetics and adverse effect of phenformin. To investigate the involvement of P-gp in the transport of phenformin, a bi-directional transport of phenformin was carried out in LLC-PK1 cells overexpressing P-gp, LLC-PK1-Pgp. Basal to apical transport of phenformin was 3.9-fold greater than apical to basal transport and became saturated with increasing phenformin concentration ($2-75{\mu}M$) in LLC-PK1-Pgp, suggesting the involvement of P-gp in phenformin transport. Intrinsic clearance mediated by P-gp was $1.9{\mu}L/min$ while passive diffusion clearance was $0.31{\mu}L/min$. Thus, P-gp contributed more to phenformin transport than passive diffusion. To investigate the contribution of P-gp on the pharmacokinetics and adverse effect of phenformin, the effects of verapamil, a P-gp inhibitor, on the pharmacokinetics of phenformin were also examined in rats. The plasma concentrations of phenformin were increased following oral administration of phenformin and intravenous verapamil infusion compared with those administerd phenformin alone. Pharmacokinetic parameters such as $C_{max}$ and AUC of phenformin increased and CL/F and Vss/F decreased as a consequence of verapamil treatment. These results suggested that P-gp blockade by verapamil may decrease the phenformin disposition and increase plasma phenformin concentrations. P-gp inhibition by verapamil treatment also increased plasma lactate concentration, which is a crucial adverse event of phenformin. In conclusion, P-gp may play an important role in phenformin transport process and, therefore, contribute to the modulation of pharmacokinetics of phenformin and onset of plasma lactate level.