The automated ECG diagnostic systems in hospital have a low P-wave detection capacity in case of some diseases like conduction block. The purpose of this study is to improve the P-wave detection ca- pacity using wavelet transform. The first procedure is to remove baseline drift by subtracting the median filtered signal from the original signal. The second procedure is to cancel ECG's QRS-T complex from median filtered signal to get P-wave candidate. Before we subtracted the templete from QRS-T complex, we estimated the best matching between templete and QRS-T complex to minimize the error. Then, wavelet transform was applied to confirm P-wave. In particular, haiti wavelet was used to magnify P-wave that consisted of low frequency components and to reject high frequency noise of QRS-T complex cancelled signal. Finally, p-wave was discriminated and confirmed by threshold value. By using this method, We can got the around 95.1% P-wave detection. It was compared with contextual information.
Objectives : This study aimed to assess the effects of incense smokes of 'Cheung-Woon' on the concentration and EEG in healthy individuals. Methods : A total of 48 healthy volunteers participated in this study. The volunteers were examined with K-MAS, CBT(Corsi block tapping task), and EEG before and after smelling the incense smokes of 'Cheung-Woon'. K-MAS measured the recalled words, and CBT measured the recalled positions and orders of the color boxes. EEG measured the relative power of ${\theta}$ wave, ${\alpha}$ wave, SMR wave, mid-${\beta}$ wave, high-${\beta}$ wave, ${\gamma}$ wave and T(concentraion index T = (SMR wave + mid-${\beta}$ wave) / ${\theta}$ wave). 'Cheung-Woon' consists of 7 herbal powder, known as a useful effect on the concentration and memory. Results : After smelling 'Cheung-Woon', K-MAS were increased significantly(p<0.05). In relative power of ${\theta}$ wave, F4, T3, and P4 were decreased significantly(p<0.05) and P3 was also decreased significantly(p<0.01). In the relative power of ${\alpha}$ wave, SMR wave, and mid-${\beta}$ wave, the values were not significant. In the relative power of high-${\beta}$ wave, Fp1, and P4 were increased significantly(p<0.05). In relative power of ${\gamma}$ wave, T3 were increased significantly (p<0.05). In T value, F4, T3, T4, and P4 were increased significantly(p<0.05) and P3 were also increased significantly(p<0.01). Conclusions : This results show that smelling incense smokes of 'Cheung-Woon' is an effective way of increasing concentration and memory.
Kim, Min-Kyu;Byun, Mi-Kyung;Lee, Ki-Young;Kim, Jung-Kuk;Jeong, Byung-Doo;Huh, Woong
Proceedings of the KIEE Conference
/
2005.10b
/
pp.35-37
/
2005
In this study, a P- and T-wave detection algorithm in ECG, obtained by minimized filtering to prevent waveform distortion, has been realized. The algorithm uses two slope tracing waves, the descending slope tracing wave and the ascending slope tracing wave, developed for efficient determination of slope inverting points and sudden slope changing points. The algorithm generates the slope tracing waves which trace the original ECG wave, and subtracts one tracing wave from the other to detect P- and T-waves. The algorithm has been applied to MIT/BIH database in order to verify its efficacy and validity in practical applications.
Journal of information and communication convergence engineering
/
v.19
no.2
/
pp.93-101
/
2021
Cardiac arrhythmias are common heart diseases and generally cause sudden cardiac death. Electrocardiogram (ECG) is an effective tool that can reveal the electrical activity of the heart and diagnose cardiac arrhythmias. We propose detection of P waves based on QRST cancellation zero-one substitution. After preprocessing, the QRST segment is determined by detecting the Q wave start point and T wave end point separately. The Q wave start point is detected by digital analyses of the QRS complex width, and the T wave end point is detected by computation of an indicator related to the area covered by the T wave curve. Then, we determine whether the sampled value of the signal is in the interval of the QRST segment and substitute zero or one for the value to cancel the QRST segment. Finally, the maximum amplitude is selected as the peak of the P wave in each RR interval of the residual signal. The average detection rate for the QT database was 97.67%.
The purpose of this paper is to improve the P-wave detection capacity using wavelet transform. The first procedure is to remove baseline drift using the median filter. The second procedure is to cancel ECG's QRS-T complex with ECG's QRS-T complex templete to get P-wave candidate. Before we cancelled out the QRS-T complex, we estimated the best matching between templete and QRS-T complex to minimize the error. Then, Harr wavelet was used to eleminate the high frequency noise of ECG wave form cancelled the QRS-T complex. Finally, P-wave was discriminated and confirmed by threshold value. By using this method, We can got the around 95.1% P-wave detection.
The detection of P-waves and T-wave in the electrocardiogram signal analysis is an important issue. But the accuracy of the boundary detection algorithm is an insufficient level in the change of slow transition in the signal compared to the QRS complex. This study proposes an algorithm to detect P-wave and T-wave sequentially after determining local baseline using QRS complex. First, we detected the peak points based on local baseline and determined the onset and offset through the calculation of the area of the section. After modifying the baseline using detected waveform, we detected the other waveform in the same way and separated the P-wave and the T-wave based on the location. We used the PhysioNet QT database to evaluate the performances of the algorithm, and calculate the mean and the standard deviations. The experiment results show that standard deviations are under the tolerances accepted by expert physicians, and outperform the results obtained by the other algorithms.
In this paper we consider the following strongly damped wave equation with variable-exponent nonlinearity utt(x, t) - ∆u(x, t) - ∆ut(x, t) = |u(x, t)|p(x)-2u(x, t), where the exponent p(·) of nonlinearity is a given measurable function. We establish finite time blow-up results for the solutions with non-positive initial energy and for certain solutions with positive initial energy. We extend the previous results for strongly damped wave equations with constant exponent nonlinearity to the equations with variable-exponent nonlinearity.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.2
/
pp.450-460
/
2017
T wave is cardiac parameters that represent ventricular repolarization, it is very important to diagnose arrhythmia. Several methods for detecting T wave have been proposed, such as frequency analysis and non-linear approach. However, detection accuracy is at the lower level. This is because of the overlap of the P wave and T wave depending on the heart condition. We propose T wave detection algorithm based on target area extraction through QRS cancellation and moving average. For this purpose, we detected Q, R, S wave from noise-free ECG(electrocardiogram) signal through the preprocessing method. And then we extracted P, T target area by applying decision rule for four PAC(premature atrial contraction) pattern another arrhythmia through moving average and detected T wave using RT interval and threshold of RR interval. The performance of T wave detection is evaluated by using 48 record of MIT-BIH arrhythmia database. The achieved scores indicate the average detection rate of 95.32%.
The automated ECG diagnostic systems that are odd in hospitals have low performance of P-wave detection when faced with some diseases such as conduction block. So, the purpose of this study was the improvement of detection performance in conduction block which is low in P-wave detection. The first procedure was removal of baseline drift by subtracting the median filtered signal of 0.4 second length from the original signal. Then the algorithm detected R peak and T end point and cancelled the QRS-T complex to get'p prototypes'. Next step was magnification of P prototypes with dispersion and detection of'p candidates'in the magnified signal, and then extraction of contextual information concerned with P-waves. For the last procedure, the CIR was applied to P candidates to confirm P-waves. The rule base consisted of three rules that discriminate and confirm P-waves. This algorithm was evaluated using 500 patient's raw data P-wave detection perFormance was in- creased 6.8% compared with the QRS-T complex cancellation method without application of the rule base.
The baseline selection is the first and important step to analyze magnetocardiography (MCG) parameters. There are no difficulties to select the baseline between P- and Q-wave peak (P-Q interval) of MCG wave recorded from healthy subjects because the P-Q intervals of the healthy subjects do not much vary. However, patients with ischemic heart disease often show an unstable P-Q interval which does not seem to be appropriate for the baseline. In this case, T-P interval is alternatively recommended for the baseline. However, there has been no study on the difference made by the baseline selection. In this study, we studied the effect of the different baseline selection. MCG data were analyzed from twenty healthy subjects and twenty one patients whose baselines were alternatively selected in the T-P interval for their inappropriate P-Q interval. Paired T-test was used to compare two set of data. Fifteen parameters derived from the R-wave peak, the T-wave peak, and the period, $T_{max/3}{\sim}T_{max}$ were compared for the different baseline selection. As a result, most parameters did not show significant differences (p>0.05) except few parameters. Therefore, there will be no significant differences if anyone of two intervals were selected for the MCG baseline. However, for the consistent analysis, P-Q interval is strongly recommended for the baseline correction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.