• Title/Summary/Keyword: P파

Search Result 190, Processing Time 0.027 seconds

Relationship between Dynamic Elastic Modulus and Lithology using Borehole Prospecting (시추공 물리탐사를 이용한 동탄성계수와 암상과의 상관성 분석)

  • Park, Chung-Hwa;Song, Moo-Young;Park, Jong-Oh
    • Journal of the Korean earth science society
    • /
    • v.23 no.6
    • /
    • pp.507-513
    • /
    • 2002
  • To delineate the relationship between dynamic elastic modulus and lithologies, suspension PS logging was applied to Yuseong granite, Paldang banded gneiss, and Sabuk sedimentary rock. P and S wave velocities were also measured for these lithologies. In addition, uniaxial strength and Poisson’s ratio were measured in a laboratory for Yuseong granite and Paldang banded gneiss. In laboratory measurements, P and S wave velocities in Paldang banded gneiss were higher than those in Yuseong granite whereas Poisson’s ratio in Paldang banded gneiss was lower than that in Yuseong granite. This implies that P and S wave velocities correlate reversely with Poisson’s ratio. The dynamic Young modulus obtained from suspension PS logging was high compared to the dynamic bulk modulus and the dynamic shear modulus.

A Study on the P Wave Arrival Time Determination Algorithm of Acoustic Emission (AE) Suitable for P Waves with Low Signal-to-Noise Ratios (낮은 신호 대 잡음비 특성을 지닌 탄성파 신호에 적합한 P파 도달시간 결정 알고리즘 연구)

  • Lee, K.S.;Kim, J.S.;Lee, C.S.;Yoon, C.H.;Choi, J.W.
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.349-358
    • /
    • 2011
  • This paper introduces a new P wave arrival time determination algorithm of acoustic emission (AE) suitable to identify P waves with low signal-to-noise ratio generated in rock masses around the high-level radioactive waste disposal repositories. The algorithms adopted for this paper were amplitude threshold picker, Akaike Information Criterion (AIC), two step AIC, and Hinkley criterion. The elastic waves were generated by Pencil Lead Break test on a granite sample, then mixed with white noise to make it difficult to distinguish P wave artificially. The results obtained from amplitude threshold picker, AIC, and Hinkley criterion produced relatively large error due to the low signal-to-noise ratio. On the other hand, two step AIC algorithm provided the correct results regardless of white noise so that the accuracy of source localization was more improved and could be satisfied with the error range.

Comparison of shear-wave sections from inverting refracted shear waves and surface wave dispersions (횡파단면 작성을 위한 굴절된 횡파와 표면파 자료 역산 결과 비교)

  • Lee, Chang, Min;Kim, Ki-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.287-291
    • /
    • 2005
  • Two-dimensional velocity tomograms of P- and S-waves were obtained by inverting traveltimes of first arrivals. The two sections of shear-wave velocity show similar features as a whole, with smaller values on the section from surface wave dispersions. Difficulties in picking SH-wave phases due to noise and later arrivals than P waves and PS converted waves are experienced. In addition, a flat layer model based on the surface wave inversion prohibits applications of the method where sgear wave velocities vary strongly in the lateral direction.

  • PDF

A Study for the Construction of the P and S Velocity Tomogram from the Crosswell Seismic Data Generated by an Impulsive Source (임펄시브 진원에 의한 공대공 탄성파기록으로부터 P파, S파 속도 영상도출에 관한 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.3
    • /
    • pp.138-142
    • /
    • 2003
  • Crosswell seismic data were acquired in three sections crossing a tunnel of 3 different types; one was empty, another was ailed by sand, and the other was filled by rock debris. Both the P- and S-wave first arrivals were picked and the traveltime tomography was conducted to generate the P- and S- wave velocity tomograms on the all three sections. Among six tomograms, only one tomogram shows a low velocity zone that can be interpreted as a tunnel image. The tomogram is the P wave velocity image of a section that crosses an empty tunnel. The result of numerical analysis for the spatial resolution of the traveltime tomography was consistent to this finding.

Development of Earthquake Early Warning System nearby Epicenter based on P-wave Multiple Detection (진원지 인근 지진 조기 경보를 위한 선착 P파 다중 탐지 시스템 개발)

  • Lee, Taehee;Noh, Jinseok;Hong, Seungseo;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.107-114
    • /
    • 2019
  • In this paper, the P-wave multiple detection system for the fast and accurate earthquake early warning nearby the epicenter was developed. The developed systems were installed in five selected public buildings for the validation. During the monitoring, a magnitude 2.3 earthquake occurred in Pohang on 26 September 2019. P-wave initial detection algorithms were operated in three out of four systems installed in Pohang area and recorded as seismic events. At the nearest station, 5.5 km from the epicenter, P-wave signal was detected 1.2 seconds after the earthquake, and S-wave was reached 1.02 seconds after the P-wave reached, providing some alarm time. The maximum accelerations recorded in three different stations were 6.28 gal, 6.1 gal, and 5.3 gal, respectively. The alarm algorithm did not work, due to the high threshold of the maximum ground acceleration (25.1 gal) to operate it. If continuous monitoring and analysis are to be carried out in the future, the developed system could use a highly effective earthquake warning system suitable for the domestic situation.

Monitoring and detecting $CO_2$ injected into water-saturated sandstone with joint seismic and resistivity measurements (탄성파 및 비저항 동시측정에 의한 수포화 암석시료에 주입된 $CO_2$ 모니터링 및 탐지)

  • Kim, Jong-Wook;Matsuoka, Toshifumi;Xue, Ziqiu
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.58-68
    • /
    • 2011
  • As part of basic studies of monitoring carbon dioxide ($CO_2$) storage using electrical and seismic surveys, laboratory experiments have been conducted to measure resistivity and P-wave velocity changes due to the injection of $CO_2$ into water-saturated sandstone. The rock sample used is a cylinder of Berea sandstone. $CO_2$ was injected under supercritical conditions (10 MPa, $40^{\circ}C$). The experimental results show that resistivity increases monotonously throughout the injection period, while P-wave velocity and amplitude decrease drastically due to the supercritical $CO_2$ injection. A reconstructed P-wave velocity tomogram clearly images $CO_2$ migration in the sandstone sample. Both resistivity and seismic velocity are useful for monitoring $CO_2$ behaviour. P-wave velocity, however, is less sensitive than resistivity when the $CO_2$ saturation is greater than ~20%. The result indicates that the saturation estimation from resistivity can effectively complement the difficulty of $CO_2$ saturation estimations from seismic velocity variations. By combining resistivity and seismic velocity we were able to estimate $CO_2$ saturation distribution and the injected $CO_2$ behaviour in our sample.

Physical property evolution along gas hydrate saturation for various grain size distribution (다양한 입도분포에서의 하이드레이트 함유량에 따른 물성 변화 양상 연구)

  • Jung, Jaewoong;Lee, Jaehyung;Lee, Joo Yong;Lee, Minhui;Lee, Donggun;Kim, Sejoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.149-149
    • /
    • 2011
  • 청정 에너지원으로 높은 잠재력을 가지고 있는 가스하이드레이트는 상업적 기술개발이 미확보된 상태임에도, 우리나라에서 부존이 직접적으로 확인되었기 때문에 에너지원으로서 그 중요성이 부각되고 있다. 현재 전세계적으로 가스하이드레이트 개발 및 생산에 관한 연구가 활발히 진행되고 있으며 이에 대한 기초자료로서 가스하이드레이트가 함유된 퇴적층의 물성자료가 필요하다. 이에 따라 본 연구에서는 입도 분포별 총 5가지의 미고결 시료를 대상으로 투과도, p파속도, 전기비저항 측정을 수행하였다. 연구에 사용된 미고결 시료는 Hama#5($774{\mu}m$), #6($485{\mu}m$), #7($258{\mu}m$), #8($106{\mu}m$) 4가지와 Hama#6과 Hama#7을 1:1($371{\mu}m$)로 혼합하여 사용하였다. 실험에 사용된 장비는 가스하이드레이트를 인공적으로 생성시키기 위해 퇴적층을 모사할 수 있는 고압셀과 자료획득장비, 유체 주입장비, 온도 유지장비이다. 또한 투과도 측정에는 차압계, 전기비저항 측정에 RLC meter, p파속도 측정에 음파 송수신장비를 사용하여 각각의 물성을 측정하였다. 실험과정을 단계별로 요약하면 먼저 시료를 고압셀에 충진한 뒤 주입된 물의 양으로부터 공극률을 측정하고, 절대 투수계수를 측정하였다. 그 후, 메탄가스를 주입하여 퇴적층 내 수포화도(water saturation)를 잔류상태(irreducible saturation)로 유지시키고 메탄가스를 추가적으로 주입하여 원하는 압력까지 가압한 뒤 온도를 $1^{\circ}C$로 낮추었다. 가스하이드레이트의 생성은 급격한 압력강하로부터 알 수 있다. 최종적으로 가스하이트레이트가 함유된 퇴적층의 상대 투수계수를 측정하기 위해 메탄가스를 주입하였고 각각의 측정장비를 통해 전기비저항 및 p파 속도를 측정하였다.$V_g$, $V_h$, $V_w$, $V_ss$는 각각 가스의 부피, 하이드레이트의 부피, 물의 부피, 모래의 부피이다. 또한 수포화도, $S_w=\frac{V_w}{V_v}$이며 하이드레이트 포화도, $S_h=\frac{V_w}{V_v}$, 가스 포화도, $S_g=\frac{V_g}{V_v}$로 정의된다. 본 실험의 결과 투과도는 가스의 부피비, $\frac{V_g}{V}=nS_g$에 민감한 반응을 보였으며, 비저항은 공극수의 부피비, $\frac{V_w}{V}=nS_w$에 민감한 반응을 보였다. 또한 p파 속도는 고체의 부피비, $\frac{V_s+V_h}{V}=n(1-S_h)$에 민감한 반응을 보였다. 이러한 실험의 결과는 가스하이드레이트 개발, 생산 연구에 있어 기초 물성자료로 활용되는데 도움을 줄 것이다.

  • PDF

A Study on the Improvement of Microseismic Monitoring Accuracy by Borehole 3-Component Measurement Field Experiments (시추공 3성분 계측 현장실험을 통한 미소지진 모니터링 정확도 향상 연구)

  • Kim, Jungyul;Kim, Yoosung;Yun, Jeumdong;Kwon, Sungil;Kwon, Hyongil;Park, Seongbin;Park, Juhyun
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • In order to improve the accuracy of microseismic epicenter location through the inversion techniques using P and S wave first arrivals, field experiments of microseismic monitoring were performed using borehole 3-component geophones. The direction of epicenter was estimated from the hodograms of P-wave first arrivals through the weight drop experiments in which the $\times$ component of 3-component geophone was aligned to the magnetic north. The picking of S wave first arrival was possible in the polarization filtered data even if S waves are difficult to be identified in raw data. The inversion technique using only P wave first arrival times can often converge to the local minimum when the initial values for epicenter are largely apart from the true epicenter, so that the correct solution can not be found. To solve this problem, the epicenter determination method using differences between P and S wave arrival times was used to estimate proper initial values of epicenter. The inversion result using only P-wave first arrival times which started from the estimated initial values showed the improved accuracy of the epicenter location.

P Wave Detection Algorithm through Adaptive Threshold and QRS Peak Variability (적응형 문턱치와 QRS피크 변화에 따른 P파 검출 알고리즘)

  • Cho, Ik-sung;Kim, Joo-Man;Lee, Wan-Jik;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1587-1595
    • /
    • 2016
  • P wave is cardiac parameters that represent the electrical and physiological characteristics, it is very important to diagnose atrial arrhythmia. However, It is very difficult to detect because of the small size compared to R wave and the various morphology. Several methods for detecting P wave has been proposed, such as frequency analysis and non-linear approach. However, in the case of conduction abnormality such as AV block or atrial arrhythmia, detection accuracy is at the lower level. We propose P wave detection algorithm through adaptive threshold and QRS peak variability. For this purpose, we detected Q, R, S wave from noise-free ECG signal through the preprocessing method. And then we classified three pattern of P wave by peak variability and detected adaptive window and threshold. The performance of P wave detection is evaluated by using 48 record of MIT-BIH arrhythmia database. The achieved scores indicate the average detection rate of 92.60%.

P Wave Dispersion as a Predictor of Idiopathic Paroxysmal Atrial Fibrillation (특발성 발작성 심방세동 환자에서 P파 간격분산의 의의)

  • Hong, Gue-Ru;Kim, Woong;Park, Jong-Seon;Shin, Dong-Gu;Kim, Young-Jo;Shim, Bong-Sup
    • Journal of Yeungnam Medical Science
    • /
    • v.18 no.2
    • /
    • pp.267-276
    • /
    • 2001
  • Background: P wave dispersion(PWD) is defined as the difference between the maximum and minimal P wave duration in any of the 12 leads of the surface ECG. The prolongation of atrial conduction time and the inhomogeneous propagation of sinus impulse are known electrophysiologic features in patients with paroxysmal atrial fibrillation(PAF). The purpose of this study was to determine the role of P wave dispersion for the prediction of PAF and to evaluate the effectiveness of prophylactic antiarrhythmic therapy. Materials and Methods: The study population included 20 patients with a history of idiopathic PAF and 20 age and sex matched healthy control subjects. We measured the maximum P wave duration(P maximum) and P wave dispersion from 12 lead ECG. Results: P maximum and P dispersion in idiopathic PAF were significantly higher than normal control group($97.2{\pm}12$, $48.5{\pm}9$ msec vs, $76.5{\pm}11$, $21{\pm}8$ msec, respectively p<0.001, <0.001). After 12-month follow up period P maximum and P dispersion were significantly reduced than those of initial state($77.2{\pm}13$, $26.4{\pm}9$ msec vs. $97.2{\pm}12$, $48.5{\pm}9$ msec, respectively p<0.001,<0.001). Conclusion: P dispersion and P maximum were significantly different between patients with idiopathic PAF and healthy control group. Those are easily accessible, non-invasive simple electrocadiographic markers that could be used for the prediction and prognostic factors of idiopathic PAF.

  • PDF