• Title/Summary/Keyword: P&O MPPT

Search Result 99, Processing Time 0.023 seconds

A Study on the Two-Mode MPPT Control Algorithm and Efficiency Evaluation Method (Two-Mode MPPT 알고리즘 연구 및 효율평가법)

  • Yu, Gwon-Jong;Kim, Ki-Hyun;Jung, Young-Seok;Kim, Young-Seok
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.1
    • /
    • pp.11-20
    • /
    • 2001
  • In this paper described common MPPT(Maximum Power Point Tracking) control algorithm; Constant Voltage Control, P&O(Perturbation and Observation), IncCond(Incremental Conductance), and investigated it's efficiency. Through simulation and efficiency evaluation, analyze the steady/transient states characteristics and efficiency of control algorithms respectively. Also, To high-efficiency proposed Two-mode MPPT control for improve on the existing control algorithm. Moreover, this paper suggested a topology for MPPT measuring efficiency and a method of examination.

  • PDF

A Study on the MPPT Control Method for Grid-connected Multi-String Three-Phase Three-Level PV Inverter (계통연계형 멀티스트링 3상 3레벨 태양광 인버터의 MPPT 제어방법에 관한 연구)

  • Kim, Jinsoo;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.43-48
    • /
    • 2014
  • Two-level inverter has some disadvantages like high harmonics contained in the output current, efficiency limit and stress to switching device as IGBT and FET. Many researches have reported multi-level inverter to complement two-level inverter of problems. In this paper, we suggest MPPT algorithm of multi-string three-level solar inverter that considered nowadays. We added midpoint controller in order to implement the MPPT algorithm because the three-level inverter has to need midpoint controller and procured the stability of direct current link. We verify the superiority of multi-string T-Type inverter and the algorithm we suggested with solar irradiance variation experiment and MPPT efficiency measurement. The MPPT efficiency was confirmed with a high efficiency more than 99.97%.

Model for Maximum Power Point Tracking Using Artificial Neural Network and Fuzzy (인공 신경망과 퍼지를 이용한 최대 전력점 추적을 위한 모델)

  • Kim, Tae-Oh;Ha, Eun-Gyu;Kim, Chang-Bok
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.9
    • /
    • pp.19-30
    • /
    • 2019
  • Photovoltaic power generation requires MPPT algorithm to track stable and efficient maximum power output power point according to external changes such as solar radiation and temperature. This study implemented a model that could track MPP more quickly than original MPPT algorithm using artificial neural network. The proposed model finds the current and voltage of MPP using the original MPPT algorithm for various combinations of insolation and temperature for training data of artificial neural networks. The acquired MPP data was learned using the input node as insolation and temperature and the output node as the current and voltage. The Experiment results show tracking time of the original algorithms P&O, InC and Fuzzy were respectively 0.428t, 0.49t and 0.4076t for the 0t~0.3t range, and MPP tracking time of the proposed model was 0.32511t and it is 0.1t faster than the original algorithms.

Study on The Solar Buck Converter Voltage Controller Design Method (태양광 벅 컨버터 전압 제어기 설계기법에 관한 연구)

  • HWANG, KYUIL;KIM, ILSONG
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.489-490
    • /
    • 2019
  • 본 연구에서는 태양광 벅 컨버터 제어기에 P&O 알고리즘을 이용하면서 MPPT 알고리즘의 추적 속도를 올리기 위한 최적 태양전지 전압 제어기 설계방법에 대해 제안한다. 제안된 제어기에서는 외부 루프의 MPPT 제어기의 수행 속도를 얼마나 빠르게 하는지에 대한 이론적인 방법을 제시하고 업데이트 주기를 0.1[sec] 이하로 줄이는 것을 목표로 전압제어기는 오버슈트가 업고, 빠른 상승시간을 갖도록 설계하여 MPPT 제어기의 추적 속도를 향상시키는 제어기법을 제안하고, 설계된 제어기 이득을 PSIM 시뮬레이션을 통해 제어기 성능을 검증한다.

  • PDF

MPPT Strategy to Improve Photovoltaic Power Generation Efficiency in Partial Shadows (부분 음영에서의 태양광 발전 효율을 높이기 위한 MPPT 전략)

  • Heo, Cheol-Young;Kim, Yong-Rae;Lee, Young-Kwoun;Lee, Dong-Yun;Choy, Ick;Choi, Ju-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • In order to increase the power generation efficiency of the photovoltaic system, a new algorithm that can follow the maximum power point of the photovoltaic power generation system having nonlinear output characteristics is proposed. Conventional maximum power point tracking (MPPT) algorithms such as Perturbation and Observation (P&O) and InCond (Increment and Conductance) schemes can not find the global maximum power point at a plurality of pole points in the unmatched state of unbalanced PV modules. However, even if the global maximum power point is found at a plurality of pole points, the global maximum power that can not be the real maximum power by the photovoltaic generation system. In order to solve this problem, a few PV companies propose installing several small PV inverters instead of if big one. However, since this will require additional costs, we herein propose a Multi-MPPT system using individual 3-point MPPT to track true MPPT at a plurality of pole points in the unmatched state of unbalanced PV modules.

Analysis of various MPPT algorithms for PCS (태양광 발전시스템의 MPPT 알고리즘 분석)

  • Shim, Jae-Hwe;Yang, Seung-Dae;Jung, Seung-Hwan;Choi, Ju-Yeop;Choy, Ick;An, Jin-Ung;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.16-21
    • /
    • 2011
  • Since the maximum power operating point(MPOP) of PCS alters with changing atmospheric conditions temperature conditions shadow conditions it is important to operate for PCS to keep maximum power point tracking(MPPT) continuously. This paper presents the results of modeling PV system by PSIM simulator and investigates the influence on the PV system from aspect of power quality i.e. voltage drop. This paper investigates four MPPT algorithms; Perturbation & Observation(P&O) Improved P&O Incremental Conductance(Incond) Differential coefficient method simulated with irradiation temperature change and shadow conditions.

A Novel Maximum Power Point Tracking Control Algorithm for Photovoltaic System (태양광 발전 시스템을 위한 새로운 최대 출력점 추종 제어 알고리즘)

  • Kim, Tae-Yeop;Lee, Yun-Gyu;An, Ho-Gyun;Park, Seung-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.3
    • /
    • pp.133-141
    • /
    • 2002
  • Most maximum power point tracking(MPPT) control algorithm is based on Perturb and Observe(P&O) and Incremental Conductance(IncCond). In comparison with P&O and IncCond algorithm, the dynamic and tracking characteristic of IncCond algorithm is better than P&O algorithm in condition of rapidly changing solar radiation. But in the case of digital implementation, the InCond algorithm has error en decision of maximum power operation point(MPOP). To solve this problem, this paper proposes a improved IncCond algorithm, which can determine the MPOP correctly by inserting the test signal in control input. This paper proposes a novel MPPT control algorithm for the digitally implemented photovoltaic system in condition of rapidly changing solar radiation. To verify the validity of the proposed control algorithm. the computer simulation and experiment are carried out.

Comparative Study and Simulation of P&O Algorithm using Boost Converter for a Photovoltaic System

  • Ganzorig, Batdelger;Song, Han-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.4
    • /
    • pp.395-403
    • /
    • 2019
  • The excessive need of power is creating an unbalance situation in power sector, where solar energy is one of the best solutions among other energy sources to mitigate this demand. It is globally accepted because of its flexibility and long life compared to others. A lot research is going on to enhance the energy efficiency by introducing photovoltaic (PV) power generation technology, but still irradiation of PV power is the major problem. In this manuscript, we have designed PV module using single diode methodology and also the solar conversion efficiency was boosted with maximum power point tracking (MPPT) by using perturb and observe (P&O) algorithm. The simulation was done for $1000W/m^2$ and $800W/m^2$ at solar irradiance in cell temperature of 25C and 40C degree levels in PSIM tool.

An Improved Power Point Tracking Algorithm Using Optimization Method (최적화 방법을 이용한 MPPT 알고리즘의 개선)

  • Park, Jun-Young;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.375-376
    • /
    • 2015
  • 태양광 시스템은 낮 시간 동안에만 사용할 수 있기 때문에 사용시간이 제한적이다. 이 제한적인 시간 내에 최대의 효율을 발휘하기 위해서 태양광 시스템은 주로 최대전력지점 추종(MPPT) 방법을 사용한다. 결국 MPPT 방법에 따라서 전체 시스템의 효율이 영향을 받을 수 있다. 본 논문은 황금분할법으로 최대전력지점(MPP)을 추종하는 새로운 MPPT 알고리즘을 제안한다. 제안방법의 성능은 결정형 PV 패널 MSX120을 이용하여 기존의 MPPT방법인 P&O 방법을 제안방법과 비교하며, 제안방법의 성능의 검증은 기존방법과 시스템의 효율 및 MPP를 추종하는 속도를 비교하여 평가하였다. 그 결과 제안방법의 효율 및 MPP추종속도가 개선됨을 확인할 수 있었다.

  • PDF

Maximum Power Control of Tidal Current Generation System using P&O Algorithm (P&O알고리즘을 이용한 조류발전 시스템의 최대출력 제어)

  • Moon, Seok-Hwan;Kim, Ji-Won;Park, Byung-Gun;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.199-206
    • /
    • 2017
  • Maximum Power Point Tracking (MPPT) control needs to generate the maximum power of a tidal current turbine. A tidal current speed sensor is required to achieve effective generated power in a tidal current generation system. The most common methods used to achieve such power is the tip speed ratio of turbine and tidal current information. However, these methods have disadvantages, such as expensive installation of the tidal current sensor, parameter errors in turbine design, and different information according to the installed position of the tidal current sensor. This paper proposes a maximum power control scheme using perturb-and-observe (P&O) for tidal current generation system. The proposed P&O MPPT scheme can achieve the maximum power without tidal current sensors and turbine design parameters. The reliability and suitability of the proposed control scheme are proven through simulation and experiment results at the tidal current generation laboratory.