• Title/Summary/Keyword: Ozonide

Search Result 10, Processing Time 0.027 seconds

Quantum Mechanical Investigation on the Intermediates of Alkene-Ozone Reaction (알켄-오존 반응의 중간 생성물에 대한 ab initio 양자역학적 고찰)

  • Kang, Chang Deok;Kim, Seung Jun
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.2
    • /
    • pp.161-171
    • /
    • 1998
  • The geometrical parameters, vibrational frequencies, and IR intensities for primary ozonide (POZ), secondary ozonide (SOZ) and carbonyl oxide as the intermediates of alkene-ozone reaction have been predicted using high level ab initio quantum mechanical method with various basis sets. In general, the polarization function decreases bond lengths and bond angles, while the electron correlation effect increases bond lengths slightly. The electronic structure of carbonyl oxide has been predicted to be zwitterionic structure and energy difference between zwitterionic and diradical structure is evaluated to be 22.4 kcal/mol at TZ2P CISD level of theory. The experimental vibrational frequencies and IR intensities of POZ and SOZ will be compared and discussed with our high level theoretical predictions.

  • PDF

The Study on the Detoxification of Aflatoxin $G_1$ in Cancer Compound (발암물질인 아플라톡신 $G_1$의 탈독소화 반응에 관한 연구)

  • 장향동;김래현;이수경
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.84-89
    • /
    • 1996
  • The Oxidation of aflatoxin $G_1$ ($AFG_1$) with ozone in chloroform solvent gave the stable ozonide into ozonization of the double bond in the terminal furan ring, and this reaction have been carried out for 3hr at -78. 5$^{\circ}C$. The chloroform solvent was removed in a stream of nitrogen and the residue was separated by elution chromatography(EC). The structure of this compound have been identified by using MS, $^1H-NMR$, $^l3C-NMR$ and I. R spectroscopy, respectively. This compound was formed the normal stable AFG$_1$-ozonide into spontaneous rearrangement after unstable ozonide according to sigmatropic rearrange ment dependent upon cyclo addition by ozone.

  • PDF

고분자(高分子) 재료(材料)의 오존열화(劣化) 및 방지(防止) 메커니즘

  • Heo, Dong-Seop
    • Elastomers and Composites
    • /
    • v.16 no.4
    • /
    • pp.217-227
    • /
    • 1981
  • 오존은 PE나 고무 등 고분자재료(高分子材料)의 표면(表面)에 존재하는 이중결합(二重結合)에 대(對)하여 친전자적부가반응(親電子的付加反應)으로 ozonide가 생성되고 이어서 제(第)3급(級) 수소(水素)를 공격하므로서 주쇄(主鎖)가 절단된다. 따라서 aldehyde, ketone 등의 carbonyl 화합물(化合物)이 생성된다. 이들이 재료표면(材料表面)의 굴곡변형(變形)의 증가에 따라 열(熱) 또는 공(光)에 의하여 다시 분해(分解)를 촉진시킨다. 2개(個)의 N분자(原子)에 방향족(芳香族) 및 지방족기(脂肪族基)를 각각 치환시킨 p - phenylene diamine 유도체(誘導體) 등과 같은 전자공흥성(電子供與性)이 큰 화합물(化合物)은 친전자적(親電子的)인 오존과 우선적으로 3급(級) 수소에 비하면 약 100 배(倍)로 반응성이 크다는것을 표(表)3으로 알수 있다. 미단이중결합(未端二重結合)에 대한 오존과의 반응은 다음 반응식과 같이 이중결합(二重結合)에 오존의 부가반응(付加反?)으로 개시(開始)되어 peroxi methylene이 유리되면서 미단(未端)은 aldehyde로 변화한다. 또 1개의 반응은 제(第)3급(級) 탄소-수소 결합에 오존이 삽입되고 계속 일어나는 분해반응으로서 hydroperoxide의 생성 및 탈염화수소(脫鹽化水素)반응이 일어난다. 이와같은 반응(反?)으로 생성(生成)된 내부(內部) 이중결합(二重結合)에 대한 오존의 반응은 olefin의 경우와 마찬가지로 molozonide나 ozonide의 과정을 거쳐 주쇄(主鎖)가 개열(開裂)되는 것이다.

  • PDF

Synthesis of ω-formal Carboxylic Acid by Ozone Oxidation of Cycloolefins (시클로올레핀류의 오존 산화 반응에 의한 ω-formyl Carboxylic Acid의 합성)

  • Kim, Bong M.;Yang, Hyun S.
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.646-656
    • /
    • 1994
  • The ${\omega}$-formyl carboxylic acid was produced by ozone oxidation of cycloolefins in the presence of pyridine and its production yield was examined by varying temperature and solvent. As the reaction temperature increased, the yield of ${\alpha}$, ${\omega}$-dicarboxylic acid increased whereas that of ${\alpha}$, ${\omega}$-dialdehyde decreased. As the polarity of solvent increased, a higher yield of desired ${\omega}$-formyl carboxylic acid was obtained, whereas the yield of unwanted polymeric ozonide decreased. The yields of ${\omega}$-formyl carboxylic acid from ozone oxidation of cyclohexene, cyclooctene and cyclododecene at $0^{\circ}C$ and in methylene chloride solvent were 59.30%, 55.20%, and 36.72%, respectively.

  • PDF

Ozonolyses of Cycloalkenes: Trapping of Carbonyl Oxide by Trifluoroacetophenone

  • 이주연;이치원;허태성
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1244-1248
    • /
    • 1998
  • Ozonolysis reactions of cyclic olefins 1a-c and norbomene In in the presence of trifluoroactophenone 6 provided the corresponding cross-ozonides 7a-c and 7n. Further reactions of ozonides 7a-c and 7n with the independently prepared carbonyl oxide 11 gave diozonides of structure l0a-c and 10n. The ozonolysis of 1methylcyclopentene 12a and 1-methylcyclohexene 12b in the presence of trifluoroactophenone 6 provided exclusively ozonide 15 and 16 derived from capture of carbonyl oxide 13. All of the new ozonides have been isolated as pure substances and characterized by their 1H NMR and 13C NMR spectra.

Ozone Oxidation of Trans-3-hexene with/without Pyridine (Pyridine 존재여부에 따른 Trans-3-hexene의 오존 산화 반응)

  • Kim, Chul G.;Hong, Won P.
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.579-587
    • /
    • 1992
  • It was explored, whether the usual course of the ozonolysis of olefins can be modified with the help of pyridine. In the First step, the ozone oxidation of trans-3-hexene was performed with and without pyridine in the inert solvents n-pentane and dichloromethane. In addition, base catalyzed decompositions of monomeric and polymeric ozonides were also examined to identify the reaction mechanism. The reaction products were identified by modern analytical tools. The results of this work showed that reactions of ozone with olefins in the absence of pyridine in aprotic solvents gave, one hand, dominantly peroxidic products, namely monomeric and polymeric ozonides. The other hand, they in the presence of pyridine gave only the non-peroxidic products, namely propionaldehyde and rearranged propionic acid without peroxidic products. It seems, also, that the pyridine-catalyzed isomerization of the Criegee zwitterion of trans-3-hexene to give propionic acid takes place in the ozone oxidation of trans-3-hexene.

  • PDF

Anti-microbial Activity Effects of Ozonized Olive Oil Against Bacteria and Candida albicans (오존화 올리브 오일의 세균과 Candida alicans에 대한 항미생물 활성 효과)

  • Chung, Kyung Tae;Kim, Byoung Woo
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.223-230
    • /
    • 2019
  • Ozone is a gaseous molecule able to kill microorganisms, such as yeast, fungi, bacteria, and protozoa. However, ozone gas is unstable and cannot be used easily. In order to utilize ozone properly and efficiently, plant oil can be employed. Ozone reacts with C-C double bonds of fatty acids, converting to ozonized oil. In this reaction, ozonide is produced within fatty acids and the resulting ozonized oil has various biological functions. In this study, we showed that ozonized oil has antimicrobial activity against fungi and bacteria. To test the antimicrobial activity of ozonized oil, we produced ozonized olive oil. Ozonized olive oil was applied to Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. Antimicrobial activity was assayed using the disk diffusion method following the National Committee for Clinical Laboratory Standards. Minimal inhibitory concentrations (MIC) were 0.25 mg for S. aureus, 0.5 mg for S. epidermidis, 3.0 mg for P. aeruginosa, and 1.0 mg for E. coli. Gram positive bacteria were more susceptible than Gram negative bacteria. We compared growth inhibition zones against S. aureus and MRSA, showing that the ozonized olive oil was more effective on MRSA than S. aureus. Furthermore, the ozonized olive oil killed C. albicans within an hour. These data suggested that ozonized olive oil could be an alternative drug for MRSA infection and could be utilized as a potent antimicrobial and antifungal substance.