• Title/Summary/Keyword: Ozone utilization efficiency

Search Result 11, Processing Time 0.021 seconds

The Characteristics of the Ozonation of the Phenol Wastewater in the Continuous PCR and BCR (연속식 PCR과 BCR에서 기$cdot$액 접촉 방법 및 주입 오존 유량에 따른 페놀 폐수의 오존 처리특성)

  • Kim, Yong-Dai;Ahn, Jae-Dong;Lee, Joon
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.1
    • /
    • pp.57-64
    • /
    • 1996
  • The main objectives of this research program were to study the ozonation characteristics of phenol wastewater in the continuous packed colamn reactor(PCR) and the bubble column reactor (BCR) using ozone and to provide the fundamentals of ozonizing the phenol wastewater. Among various influencing factors that affect on phenol decomposition through the oxidation by ozone, contacting method, and ozone flow rate were chosen as reaction parameters. The results were obtained from two different types of contacting methods where the countercurrent flow was more efficient than the cocurrent flow in both the phenol removal efficiency and the ozone utilization efficiency. Furthermore, PCR showed the phenol removal efficiency 1.6 to 3% higher than that of BCR in both contacting methods, as well as the ozone utilization efficiency, suggesting that the countercurrent flow is more efficient than the cocurrent flow. The phenol removal efficiency and the ozone utilization efficiency were reduced in both reactors as the influent ozone flow rate increased. Upon varing flow rate from 0.5l/min to 2.0 l/min by 0.5 l/min, the phenol removal efficiency was reduced approximately from 8.5% to 10.5% and the ozone utilization efficiency was reduced approximately from 6% to 8% in both reactors. The performance of PCR was superior to that of BCR in the aspects of phenol removal and ozone utilization efficiency.

  • PDF

Effect of Ozone Treatment for Nakdong River Raw Water - II. Removal of VOCs and Algae in Raw Water by Conducting Batch Test of Ozonation Experiments - (낙동강 상수원수의 오존처리 효과 - II. 회분식 오존처리에 의한 휘발성유기화합물 및 조류제거 효과 -)

  • 임영성;이홍재;이도진;허종수;손보균;조주식
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1267-1274
    • /
    • 2002
  • This study was carried out to evaluate the pollutant removal efficiencies of the advanced drinking water treatment using ozonation process. For raw water, Nakdong River was used. By conducting batch test of ozonation, the following results were obtained. When ozone dosage of $5 mg/{\ell}$ was used, ozone transfer and utilization efficiencies of the ozonation were 94 to 92%, respectively. Removal efficiencies of single VOC compound or mixed VOC compounds in the raw water were 80% to 90% by the ozonation with $2 mg/{\ell}$ dosage and 10 minutes contact time. Removal efficiencies of ABS by the ozonation with $1 mg/{\ell}$, $3 mg/{\ell}$ dosage and 20 minutes contact time were 83% to 96%, respectively. Almost 67% of chlorophyll-a at the concentration of $38.4\mu\textrm{g}/{\ell}$ was removed by ozonation at ozone dosage of $1 mg/{\ell}$ for 20 min. Considering the efficiency of ozone utilization and water treatment, the most effective ozonation could be obtained with high ozone dosage and short contact time.

The Characteristics of the Ozonation of phenol wastewater by the variation of pH using the continuous PCR and BCR (연속식 PCR과 BCR에서 pH 변화에 따른 페놀 폐수의 오존처리특성에 관한 연구)

  • 안재동;김민수;김용대;최석규
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.1
    • /
    • pp.74-80
    • /
    • 1997
  • This study was performed to estimate the ozonation characteristics of phenol wastewater with increasing pH in the continuous packed column reactor (PCR) and the bubble column reactor (BCR). Among various influencing factors that affect phenol on decomposition through the ozonation, pH was chosen as reaction parameter. Upon increasing pH from 3 to 9, the phenol removal efficiency in PCR was improved approximately by 17% while in BCR approximately by 19.2%. The improvements in the phenol removal efficiency by increasing pH caused the enhancements in ozone utilization efficiency reaching almost 100% in PCR at pH 9. In conclusions, ozone has latent power for phenol wastewater treatment, and the performance of PCR was superior to that of BCR in the aspects of phenol removal and ozone utilization efficiency.

  • PDF

Ozonation of Reactive Dyes and Control of THM Formation Potentials (오존산화에 의한 반응성염료의 제거 및 THM생성능의 제어)

  • 한명호;김범수;허만우
    • Textile Coloration and Finishing
    • /
    • v.16 no.2
    • /
    • pp.34-40
    • /
    • 2004
  • This study was conducted to remove the reactive dyes by the Ozone demand flask method which are one of the main pollutants in dye wastewater, Ozone oxidation of three kinds of the reactive dyes was examined to investigate the reactivity of dyes with ozone, Trihalomethane formation potentials(THMFPs), competition reaction and ozone utilization on various conditions for single- and multi-solute dye solution. Concentration of dyes was decreased continuously with increasing ozone dosage in the single-solute dye solutions. THMFPs per unit dye concentration were gradually increased with increase of ozone dosage. By the result of THMFPs change with reaction time, THMFPs were rapidly decreased within 1 minute in single-solute dye solutions. Dey were increased after 1 minute of reaction time, and then they were consistently decreased again after longer reaction time. Competition quotient values were calculated to investigate the preferential oxidation of individual dyes in multi-solute dye solutions. Competition quotients$(CQ_i)$ and values of the overall utilization efficiency, no$_3$, were increased at 40mg/1 of ozone dosage in multi-solute dye solutions.

A Study on the Ozonation Characteristics of the Phenol Contaminated Wastewater by Increasing Phenol Concentration in the Continuous PCR and BCR (연속식 PCR과 BCR에서 페놀 농도 증가에 따른 오존 처리 특성에 관한 연구)

  • Kim, Yong-Dai;Ahn, Jae-Dong;Lee, Joon
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.2
    • /
    • pp.12-19
    • /
    • 1995
  • The objectives of this research prograln were to study the ozonation characteristics of phenol contaminated wastewater in the continuous packed column reactor (PCR) and the bubble column reactor (BCR) using ozone that has a strong oxidizing potential, and to provide the fundamentals of ozonizing the phenol contaminated wastewater. Among various influencing factors on phenol decomposition through the oxidation by ozone, phenol/ozone mde ratio was chosen as reaction parameters. Concerning the phenol/ozone mde ratio, as the influent phenol concentration increased from 30 mg/l to 150 mg/l, the phenol removal efficiency decreased from 99% for 30 mg/l to 83.7% for 150 mg/l, in PCR. PCR also showed higher treatment efficiency than BCR by 1% for 30 mg/l and 2.2% for 150 mg/l, respectively. The ozone utilization efficiency of PCR for the phenol concentration 30 mg/l was higher than that of BCR while the efficiency of both reactors was 99.9% for the phenol concentration of 150 mg/l.

  • PDF

A Study on the Decolorization of Reactive Dyes by Using Ozone Treatment (오존에 의한 반응성 염료의 탈색에 관한 연구)

  • Lee, Mun-Soo
    • The Journal of Natural Sciences
    • /
    • v.9 no.1
    • /
    • pp.9-17
    • /
    • 1997
  • We studied on the decoloring efficiency of a dying and finishing industrial wastewater containing reactive dyes in the ozone treatment system. The wastewater containing reactive dyes improved the decolorization by the ozone oxidation. In order to determine the optical conditions for ozonation, various operation factors such as initial wastewater concentrations, pH, temperature, and ozone dose were evaluated. Ozone utilization rate was improved in general with the increase of initial concentration of wastewater. And the decolorization speed or reactive dyes was more decreased in deep color of blue series than in light color such as yellow series. The colorization of wastewater containing reactive dyes was changed step through midle color depending upon increasing of ozone treated time. The efficiency of decolorization for wastewater was improved with the pH increased and the temperature of ozone treatment system decreased.

  • PDF

Ozone Deinking Mechanism of White Ledger (White ledger의 오존 탈묵 기구)

  • 원종명;노국일
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.3
    • /
    • pp.24-28
    • /
    • 2001
  • The utilization of wastepaper as a papermaking raw material is everlastingly required for the environmental protection of earth. However the recycling of wastepaper for this purpose cause another problem such as the increasing of the load of wastewater treatment, lower strength properties of paper, and poor printability, etc. The interest in the development of the environmentally friendly deinking technology is increased continuously. Thus, our research team have tried to apply the ozone to the deinking of white ledger and ONP, and obtained the positive results which can be considered as an alternative method for the conventional deinking method. The purpose of this study is to investigate the mechanism of ozone deinking. Styrene acrylate and polystyrene were treated with ozone and measured the change of molecular weight with the GPC. The molecular weight distribution obtained with GPC showed only slight increase by the ozone treatment, and gel formation by the polymerization was observed. Therefore the removal of ink particles with ozone treatment seems to be facilitated by the increase of the brittleness and decrease of adhesive property.

  • PDF

Characteristics of The Wastewater Treatment Processes for The Removal of Dyes in Aqueous Solution(2) - Ozonation or ACF Adsorption Treatment of Reactive Dyes - (수용액 중의 염료 제거를 위한 폐수처리공정의 특성(2) - 반응성염료의 오존산화 및 섬유상활성탄 흡착 처리 -)

  • Han, Myung-Ho;Huh, Man-Woo
    • Textile Coloration and Finishing
    • /
    • v.19 no.3
    • /
    • pp.26-36
    • /
    • 2007
  • This study was carried out to treat the aqueous solutions containing reactive dyes(RB19, RR120 and RY179) by the Ozone demand flask method and adsorption process using activated carbon fiber(ACF) which are one of the main pollutants in dye wastewater. Ozone oxidation of three kinds of the reactive dyes was examined to investigate the reactivity of dyes with ozone, competition reaction and ozone utilization on various conditions for single- and multi-solute dye solution. Concentration of dyes was decreased continuously with increasing ozone dosage in the single-solute dye solutions. Competition quotient values were calculated to investigate the preferential oxidation of individual dyes in multi-solute dye solutions. Competition quotients(CQi) and values of the overall utilization efficiency, ${\eta}O_3$, were increased at 40mg/l of ozone dosage in multi-solute dye solutions. ACF(A-15) has much larger specific surface area$(1,584m^2/g-ACF)$ in comparison with granular activated carbon adsorbent (F400, $1,125m^2/g-GAC$), which is commonly used, and most of pores were found to be micropores with pore radius of 2nm and below. It was found that RB19 was most easily adsorbed among the dyes in this study. In the case of PCP (p-chlorophenol) and sucrose, which are single component adsorbate, adsorption capacities of ACF(A-15) were in good agreement with the batch adsorption measurement, and saturation time predicted of ACF columns for these components was also well agreed with practically measured time. But in the case of reactive dyes, which have relatively high molecular weight and aggregated with multi-components, adsorption capacities or saturation time predicted were not agreed with practically measured values.

Application of High-performance Jet Loop Reactor for the Decolorization of Reactive black 5 and Mineralization of Oxalic Acid by Ozone (색도물질과 옥살산의 오존분해를 위한 고효율 Jet Loop 반응기의 적용)

  • Byun, Seok-jong;Geissen, Sven-Uwe;Vogelpohl, Aflons;Cho, Soon-haing;Yoon, Je-yong;Kim, Soo-Myung
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.78-85
    • /
    • 2004
  • As an ozone contactor, we newly adopted HJLR (High-performance Jet Loop Reactor) for the decolorization of Reactive black 5 and the mineralization of oxalic acid, which has been applied exclusively in biological wastewater treatments and well-known for high oxygen transfer characteristics. The ozonation efficiency for organic removals and ozone utilization depending on the mass transfer rate were compared to those of Stirred bubble column reactor, which was controlled by varing energy input in the HJLR and Stirred bubble column reactor. The results were as follows; first, the decolorization rate of Reactive black 5 in the HJLR reactor was nearly proportional to the increasing $k_La$. When the $k_La$ was increased by 25 % from $13.0hr^{-1}$ to $16.4hr^{-1}$, 30 % of the k' (apparent reaction rate constant) was increased from 0.1966 to $0.2665min^{-1}$ (Stirred bubble column; from 0.1790 to $0.2564min^{-1}$). Ozone transfer was found to be a rate-determining step in decolorizing Reactive black 5, which was supported by that no residual ozone was detected in all of the experiments. Second, the mineralization of oxalic acid was not always proportional to the increasing $k_La$ in the RJLR reactor. The rate-determining step for this reaction was OH(OH radical) production with ozone transfer, because residual ozone was always detected during the ozonation of oxalic acid in contrast with Reactive black 5. This result indicates that the increase of $k_La$ in the HJLR reactor is beneficial only when there are in ozone transfer limited regions. In addition, regardless of $k_La$, the mineralization of oxalic acid was nearly accomplished within 60 minutes. It was interpreted as that the longer staying of residual ozone by whirling liquid in the HJLR reactor contributed to an high ozone utilization(83-94%), producing more OR radicals.

Production of high dissolved O2/O3 with rotating wheel entraining gas method for environmental application

  • Li, Haitao;Xie, Bo;Hui, Mizhou
    • Advances in environmental research
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • There is a significant demand to make various dissolved gases in water. However, the conventional aeration method shows low gas mass transfer rate and gas utilization efficiency. In this study, a novel rotating wheel entraining gas method was developed for making high dissolved $O_2$ and $O_3$ in water. It produced higher concentration and higher transfer rate of dissolved $O_2$ and $O_3$ than conventional bubble aeration method, especially almost 100% of gas transfer efficiency was achieved for $O_3$ in enclosed reactor. For application of rotating wheel entraining gas method, aerobic bio-reactor and membrane bio-reactor (MBR) were successfully used for treatment of domestic and pharmaceutical wastewater, respectively; and vacuum ultraviolet $(VUV)/UV+O_3/O_2$ reactors were well used for sterilization in air/water, removal of dust particles and toxic gases in air, and degradation of pesticide residue and sterilization on fruits and vegetables.