• Title/Summary/Keyword: Ozone stress

Search Result 61, Processing Time 0.024 seconds

Selection of Ozone Tolerant Individuals of Cornus controversa (층층나무의 온존 내성 개체 선발)

  • 장석성;이재천;한심희;김홍은
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.1
    • /
    • pp.6-10
    • /
    • 2003
  • This study was conducted to select the ozone tolerant individuals of Cornus controversa Hemsl., and to use malondialdehyde (MDA) content as an indicator of plant damage level for several oxidative stress levels. Seeds of C. controversa were collected at 9 provinces in Korea. One-year-old seedlings were grown in greenhouses and exposed to 100 pub ozone concentration for 8h day$^{-1}$ for 10 weeks. At the termination of ozone exposure, heights of seedlings were measured and MDA contents in the leaves were analyzed. Tolerant, intermediate, and sensitive individuals were selected using the standardized indices of height and MDA content. Height and MDA content of C. controversa exposed to ozone were significantly different among individuals and provinces. MDA content showed negative correlation (r=-0.531, p$\leq$ 0.001) with height growth performance. Height and MDA content of tolerant individuals presented significant differences from those of sensitive individuals. As a result, MDA content may be suitable for the evaluation of the damage level of plants by oxidative stress.

Effects of Fertilization on Physiological Parameters in American Sycamore (Platanus occidentalis) during Ozone Stress and Recovery Phase

  • Han, Sim-Hee;Kim, Du-Hyun;Lee, Jae-Cheon;Kim, Pan-Gi
    • Journal of Ecology and Environment
    • /
    • v.32 no.3
    • /
    • pp.149-158
    • /
    • 2009
  • American sycamore seedlings were grown in chambers with two different ozone concentrations ($O_3$-free air and air with additional $O_3$) for 45 days. Both the control and the $O_3$ chambers included non-fertilized and fertilized plants. After 18 days of $O_3$ fumigation, seedlings were placed in a clean chamber for 27 days. Seedlings under ozone fumigation showed a significant decrease in pigment contents and photosynthetic activity, and a significant increase in lipid peroxidation. Fertilization enhanced physiological damage such as the inhibition of photosynthetic activity and the increase of lipid peroxidation under ozone fumigation. During the recovery phase, the physiological damage level of seedlings increased with ozone fumigation. In addition, physiological damage was observed in the fertilized seedlings. Superoxide dismutase (SOD) and glutathione reductase (GR) activities of $O_3$-treated seedlings increased up to 33.8% and 16.3% in the fertilized plants. The increase of SOD activity was higher in the fertilized plants than in the non-fertilized plants. Negative effects of ozone treatment were observed in the biomass of the leaves and the total dry weight of the fertilized sycamore seedlings. The $O_3$-treated seedlings decreased in stem, root and total dry weight, and the loss of biomass was statistically significant in the fertilized plants. In conclusion, physiological disturbance under normal nutrient conditions has an effect on growth response. In contrast, in conditions of energy shortage, although stress represents a physiological inhibition, it does not seem to affect the growth response.

Study of Growth and Anthocyanin Accumulation by Ozone Stress in Rice (벼 오존가스 노출에 따른 초기 생육 및 안토시아닌 생합성 변화 분석 연구)

  • HyeonSeok Lee;WoonHa Hwang;SeoYeong Yang;Yeongseo Song;WooJin Im;HoeJeong Jeong;ChungGen Lee;Juhee Kim;MyoungGoo Choi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.2
    • /
    • pp.108-116
    • /
    • 2023
  • Recently, the concentration of fine dust causative substances (NOx, VOC, etc.) in the atmosphere has increased, resulting in high concentrations of tropospheric ozone (O3) and increased damage to crops. This study aimed to analyze the impact of high concentrations of ozone gas on the initial growth of rice plants and investigate the relationship between ozone damage resistance and anthocyanin biosynthesis. To achieve this, rice plants were exposed to elevated levels of ozone g as using an ozone chamber, and subsequent measurements were taken to assess changes in growth, the percentage of damaged leaves, and the anthocyanin content. The results revealed that varieties with a higher proportion of damaged leaves exhibited a relative increase in anthocyanin biosynthesis following ozone exposure. Notably, detrimental effects on growth, such as decreased biomass, were mitigated. Additionally, Anthocyanin biosynthesis genes in rice were listed by selecting homologous genes from Arabidopsis and Maize. The expression of OsF3H2, OsFLS1 and OsLDOX3 was induced during ozone treatment. This result is expected to contribute to the study of the protection mechanism of plants from ozone damage.

Ozone Impacts on Soluble Carbohydrates, Antioxidant Activity and Macro-element Concentrations in Rice Seedling

  • Sung Jwa-Kyung;Park So-Hyeon;Lee Su-Yeon;Lee Ju-Young;Jang Byoung-Choon;Hwang Seon-Woong;Kim Tae-Wan;Song Beom-Heon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.2
    • /
    • pp.142-147
    • /
    • 2006
  • The present study describes carbohydrate metabolism, macro-element utilization and antioxidant defenses in response to an ozone dose (100 ppb, 8d) in two rice varieties. Tolerant (cv. Jinpumbyeo) and sensitive (cv. Chucheongbyeo) varieties of rice were grown in growth chamber for 30 days after sowing. Concentrations of chloroplast pigments and non-structural carbohydrates as well as activity of antioxidant enzymes were determined to evaluate the resistance against ozone stress. Ozone caused the decrease in chlorophyll a and carotenoid contents, and also resulted in faster decomposition of non-structural carbohydrate in leaf blade and leaf sheath. The contents of nitrogen and potassium in leaves were visibly decreased in cv. Chucheongbyeo with an increase in ozone exposure, but not in cv. Jinpumbyeo. Enzymatic antioxidants against ROS in both varieties responded in the order of POD, SOD and CAT, and their capacity was stronger in cv. Jinpumbyeo.

살균과 탈취를 위한 오존 발생장치의 설계

  • Kim, Hyeon-Jong;Yun, Yeong-Mi;Han, Ji-Hye;Kim, Yeong-Ran;Lee, Eun-Mi;Lee, Hyeon-Cheol;Jeong, Bong-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.509-512
    • /
    • 2001
  • Recently, our country's piggery has been becoming large-sized and crowded gradually in scale. Thus, the environment in a piggery is getting worse, which leads to a drop in livestock's immunoactivity. Therefore, livestocks are exposured to many diseases(stress, hypertension, stomach ulcer etc.). In this paper, our intention is to design a low cost ozone-generating device with high capacity to maintain a reasonable ozone level, that is necessary for cleaning the environment in a piggery, but is not too high to cause any harmful influence to human beings and livestock. The results showed that the UV-lamp tube with baffle has an increase of 25% in ozone generation efficiency compared to without baffle and the short retention time of air or high inlet air rate shows high level of ozone.

  • PDF

Ozone Sensitivity of Physiological Indicators for Stress Evaluation in Four Families of Quercus aliena Blume (갈참나무 4가계에서 스트레스 평가용 생리 지표들의 오존 민감성)

  • Kim, Du-Hyun;Han, Sim-Hee;Lee, Jae-Cheon
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.6
    • /
    • pp.878-884
    • /
    • 2010
  • Ozone sensitivity of physiological indicators and the difference of ozone tolerance on 4 families of Quercus aliena seedlings were investigated on the basis of the standardized physiological indicators. Photosynthetic parameters, photosynthetic pigment and malondialdehyde (MDA) content, and antioxidative enzyme activities were measured or analyzed from the leaves of Q. aliena seedlings at the end of ozone fumigation, and ozone tolerance indices among 4 families were calculated with the standardized physiological parameters. After ozone treatment, the reduction of carboxylation efficiency was observed in the leaves of four families, and their reduction were ranged from -24.1% to -56.9% of control seedlings. Photosynthetic pigment content differed significantly among 4 families and treatments. The reduction of total chlorophyll content showed the highest in family SU4 (-40.6%) and the lowest family US2 (-18.8%). Ascorbate-peroxidase (APX) activity showed significant difference among families and treatments, and increased as compared with control in three families, except for family US2. On the basis of the physiological indices, ozone tolerance of four families was ranked in the order of US1 > SU4 > US2 > SU1. In conclusion, photosynthetic parameters, pigment content and APX activity were recommended as appropriate indicators to assess the tolerance against ozone stress of Q. aliena.

Effects of Crack Resistance Properties of Ozone-treated Carbon Fibers-reinforced Nylon-6 Matrix Composites (탄소섬유의 오존처리가 나일론6 기지 복합재료의 크랙저항에 미치는 영향)

  • Han, Woong;Choi, Woong-Ki;An, Kay-Hyeok;Kim, Hong-Gun;Kang, Shin-Jae;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.363-369
    • /
    • 2013
  • In this work, the effects of ozone treatments on mechanical interfacial properties of carbon fibers-reinforced nylon-6 matrix composites were investigated. The surface properties of ozone treated carbon fibers were studied by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). Mechanical interfacial properties of the composites were investigated using critical stress intensity factor ($K_{IC}$). The cross-section morphologies of ozone-treated carbon fiber/nylon-6 composites were observed by scanning electron microscope (SEM). As a result, $K_{IC}$ of the ozone-treated carbon fibers-reinforced composites showed higher values than those of as-received carbon fibers-reinforced composites due the enhanced $O_{1s}/C_{1s}$ ratio of the carbon fiber by the ozone treatments. This result concludes that the mechanical interfacial properties of nylon-6 matrix composites can be controlled by suitable ozone treatments on the carbon fibers.

The Ecophysiological Changes of Capsicum annuum on Ozone-Sensitive and Resistant Varieties Exposed to Short-Term Ozone Stress (오존 감수성 및 저항성 고추 품종의 생리생태 변화)

  • Yun, Sung-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.3
    • /
    • pp.128-132
    • /
    • 2004
  • Ozone effects were studied by plant growth chamber to evaluate the impact of ozone ($O_3$) on the physiology of two hot pepper, Capsicum annuum L., cultivars, 'Dabotab' and 'Buchon'. Forty-day old plants with $5{\sim}7$ leaves were exposed to $O_3$ of <20 and 150 nL/L for 8h/d for 3 days. Net photosynthesis and stomatal conductance were measured and foliar injury was described. Foliar damage due to the treated $O_3$ was different from the varieties. 'Dabotab' was most sensitive to $O_3$ and 'Buchon' was resistant. Symptom of ozone damage on the leaves was bifacial necrosis. Decreases of net photosynthesis by $O_3$ were 56% and 40% on 'Dabotab' and 'Buchon', respectively. Decreases of stomatal conductance by $O_3$ were 66% and 63% on each variety. $O_3$ damage on net photosynthesis was started at the low levels of light on the two hot peppers. In addition, assimilation-internal $CO_2$ concentration curves were not different from the two varieties. In conclusion, $O_3$ closed the stomata and decrease net photosynthesis on hot peppers regardless of the ozone sensitivity on leaf injury, but the difference of ecophysiological responses between the two varieties was not found clearly.

Physiological Damages and Biochemical Alleviation to Ozone Toxicity in Five Species of genus Acer

  • Han, Sim-Hee;Kim, Du-Hyun;Lee, Kab-Yeon;Ku, Ja-Jung;Kim, Pan-Gi
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.551-560
    • /
    • 2007
  • We investigated physiological damages and biochemical alleviation of five species of genus Acer under ozone fumigation in order to assess their tolerant ability against ozone toxicity. At the end of 150 ppb $O_3$ fumigation, photosynthetic characteristics were measured, and chlorophyll contents, malondialdehyde (MDA) and antioxidative enzyme activities were analyzed in the leaves of five maple trees (Acer buergerianum, A. ginnala, A. mono, A. palmatum, and A. palmatum var. sanguineum). The reduction of chlorophyll (chl) a in ozone-exposed plants was 16.8% (A. buergerianum) to 26.7% (A. ginnala) of control plants. For the content of chi b, A. ginnala and A. palmatum var. sanguineum represented the high reduction of 26.3% and 23.6%, respectively. The highest reduction on the chi a:b ratio was observed in the leaves of A. palmatum. The reduction of net photosynthesis in five species varied from 2.4% to 37.6%. Among five species, A. ginnala showed remarkable reduction (37.6%) for net photosynthesis in comparison with control. Carboxylation efficiency differed significantly (P < 0.05) among species and between control and ozone treatment. The reduction of carboxylation efficiency was the highest in the leaves of A. ginnala (44.7%). A. palmatum var. sanguineum showed the highest increase (41.7%) for MDA content. The highest increase of superoxide dismutase (SOD) activity represented in A. palmatum (26.1%) and the increase of ascorbate peroxidase (APX) activity ranged from 16.5% (A. ginnala) to 49.1% (A. palmatum var. sanguineum). A. mono showed the highest increase (376.6%) of glutathione reductase (GR) activity under ozone fumigation and A. buergerianum also represented high increase (42.3%) of GR activity. Catalse (CAT) activity increased in the leaves of A. ginnala, A. palmatun and A. palmatum var. sanguineum under ozone exposure, whereas A. buergerianum and A. mono decreased in comparison with control plants. In conclusion, physiological markers such as chlorophyll content and photosynthesis that responded sensitively to $O_3$ in maple trees were considered as the very important indicators in order to evaluate the tolerance against $O_3$ stress, and parameters were closely related with each other. Among anti oxidative enzymes, SOD and APX might be contributed to alleviate to $O_3$ toxicity through the increase of activity in all maple trees. Therefore, these compounds can be used as a biochemical maker to assess the stress tolerance to $O_3$.

Synthesis and Ozone Resistance Characteristic of Fluorine-containing modified Polyurea (불소계 변성 폴리우레아의 합성 및 오존저항 특성)

  • Kim, Sung Rae;Park, Ji Yong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.175-180
    • /
    • 2016
  • The fluorine-containing modified polyurea was synthesized using the PTPE-diol to improve the ozone-resistance. Three types (PFDIA-10C, PFDIA-20C, PFDIA-30C) of the modified polyurea containing the fluorine content from 10 wt% to 30 wt% were prepared. After ozone treatment on the prepared films, the weight loss of film was investigated and analyzed the film properties such as hardness, wear resistance, tensile stress, elongation, etc. Also, the film surfaces were observed by the optical microscopy after ozone-resistance tests at 10 ppm for 336 h. It was shown that the defects such as the cracking, the bleaching and the mass loss were reduced and the ozone-resistance of films were improved when the contents of PFPE-diol are more than 20 wt%. It was found that the intensity of O-H peak in PFDIA compounds confirmed by FT-IR was decreased as fluorine contents were increasing.