• Title/Summary/Keyword: Ozone depleting substance

Search Result 5, Processing Time 0.022 seconds

A Study on the Technical Strategy in the IMO Air Pollution Prevention (IMO의 대기오염규제에 따른 기술적 대응전략에 관한 연구)

  • 김종헌
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.2 no.S1
    • /
    • pp.77-85
    • /
    • 1996
  • As conservation of global environment has becoming a major outstanding issue of the world, the International Maritime Organization(IMO) has been legislation a convention for prevention of air pollution from ships. By the new convention, use of air pollutants such SOx, NOx, Freon and Halin Gas shall be restricted. In this regards, analysing these requirements of the convention is required as the cinvention will also be applied in restriction of descharging exhaust gases from ships by estsblishing a requirement of Sox and NOx discharged. The purpose of this study is as follows; 1) Introdcuing of the backgrounds of legislating the convention for prevention of air pollution from ships and major contents of the convention and a countermeasuures in the convention by Korea 2) Reviewing by analyzing the influence in domestic industries concernd by restriction of SOx, NOx in exhaust gases and sulpher content of fuel oil 3) Preparing a countermeasure in the convention properly.

  • PDF

Residual Characteristics of Methyl Bromide and Hydrogen Cyanide in Banana, Orange, and Pineapple (수입과실류(바나나, 오렌지, 파인애플)를 대상으로 Methyl Bromide (CH3Br)와 Hydrogen Cyanide (HCN) 훈증소독 처리 후 약제 잔류 특성)

  • Park, Min-Goo;Sung, Bo-Kyung;Cho, Jae-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.3
    • /
    • pp.214-217
    • /
    • 2011
  • Fumigant, methyl bromide which is used in most countries for plant quarantine, has been designated and under control as ozone depleting substance. For developing alternative chemicals for methyl bromide, many countries have been intensifying their capacity. This study was carried out to investigate the residue patterns of hydrogen cyanide which is commonly used for plant quarantine. Hydrogen cyanide was treated onto the orange, banana, and pineapple at recommended and double doses and then sampling was done at 1 and 3 day after fumigation treatment. Residue of hydrogen cyanide was found safe because average residue levels on orange, banana, and pineapple after 3 days of fumigation treatment were $0.57{\pm}0.05$, $0.21{\pm}0.17$, and $0.41{\pm}0.08$ ppm, which were lower than the MRLs of Korea (5 ppm), Japan (5 ppm), USA (50 ppm), and Canada (25 ppm). Hydrogen cyanide are expected to be used as alternative chemicals for methyl bromide fumigant for orange, banana, and pineapple.

Status and Trends of Emission Reduction Technologies and CDM Projects of Greenhouse Gas Nitrous Oxide (온실가스 아산화질소(N2O) 저감기술 및 CDM 사업의 현황과 전망)

  • Chang, Kil Sang
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.17-26
    • /
    • 2008
  • With the effectuation of Kyoto Protocol on the United Nations Framework Convention on the Climate Change, the emission reduction of greenhouse gases became an urgent issue and has been competitively secured among countries as the form of certificates through clean development mechanism (CDM) or joint implementation (JI). Nitrous oxide ($N_2O$) is one of the major greenhouse gases along with carbon dioxide ($CO_2$) and methane ($CH_4$) having warming potential 310 times that of carbon dioxide and chemically very stable in the atmosphere to give a life time of more than 120 years so that it reaches to the stratosphere to act as an ozone depleting substance. $N_2O$ hardly decomposes and thus, besides to the adoption of thermal decomposition at high temperature, selective catalytic reduction methods are usually used at temperatures over $400^{\circ}C$ in which the presence of NOx acts as a major impeding material in the decomposition process. In this article, the sources of various $N_2O$ generation, catalytic reduction processes and the status and trends of emission trade with CDM projects for greenhouse gas reduction are summarized and discussed on a condensed basis.

A Review on Emission and Mitigation of N2O in Biological Wastewater Treatment (생물학적 하폐수처리과정에서 N2O 배출 및 저감에 관한 고찰)

  • Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.3
    • /
    • pp.181-193
    • /
    • 2018
  • Nitrous oxide ($N_2O$) is a potent greenhouse gas as well as an ozone-depleting substance. $N_2O$ is emitted during the biological nitrogen removal process in wastewater treatment systems (WTSs), and has significant environmental impacts. In this study, $N_2O$ emission in WTSs was comprehensively reviewed to better understand the effects of key parameters on $N_2O$ emission and obtain useful guidelines for $N_2O$ mitigation strategies in WTSs. Three biological pathways leading to $N_2O$ emission are hydroxylamine oxidation, nitrifier denitrification, and heterotrohic denitrification. Measurements at lab-, pilot- and full-scale WTSs have shown large variations in $N_2O$ emission (0-95% of N-loaded) during wastewater treatment. In the full-scale WTSs (0-14.6% $N_2O$ of N-loaded), the average and median values were 1.95% and 0.2% of N-loaded, respectively. Dissolved oxygen, nitrite concentrations, and chemical oxygen demand (COD)/N ratio are the most important parameters leading to $N_2O$ emission. A variety of operational strategies have been suggested to minimize $N_2O$ emission from WTSs. A new $N_2O$ mitigation strategy involving the introduction of microorganisms with high $N_2O$ reductase activity or oxygenic denitrification ability has been proposed as an alternative canonical denitrification.