• 제목/요약/키워드: Ozone Oxidation Reaction

검색결과 85건 처리시간 0.022초

다양한 산화반응을 조합한 고급산화공정의 아세트산 분해에 관한 연구 (Destruction of Acetic Acid Using Various Combinations of Oxidants by an Advanced Oxidation Processes)

  • 권태옥;박보배;문장수;문일식
    • 공업화학
    • /
    • 제18권4호
    • /
    • pp.314-319
    • /
    • 2007
  • UV, $O_3$, $H_2O_2$, $Fe^{2+}$ 등의 산화반응을 조합한 고급산화 공정(advanced oxidation process)을 이용하여 아세트산 분해실험을 수행하였다. 적용된 고급산화 공정은 $UV/H_2O_2$, $UV/H_2O_2/Fe^{2+}$, $O_3$, $O_3/H_2O_2$, $UV/O_3/H_2O_2$$UV/O_3/H_2O_2/Fe^{2+}$ 공정이었다. 낮은 pH (3.5)에서의 아세트산 분해율은 $UV/H_2O_2/Fe^{2+}$, $O_3/H_2O_2$, $UV/O_3/H_2O_2$$UV/O_3/H_2O_2/Fe^{2+}$ 공정은 비교적 높고, $UV/H_2O_2$$O_3$ 공정은 20% 이하로 낮게 나타났다. $O_3/H_2O_2$, $UV/O_3/H_2O_2$ 공정의 아세트산 분해율은 반응시간 180 min까지 반응시간에 따라 지속적으로 증가하였으나 $UV/H_2O_2/Fe^{2+}$, $UV/O_3/H_2O_2/Fe^{2+}$ 공정에서는 반응시간 90 min까지 아세트산 분해율이 급격히 증가한 후 그 이후에는 분해율의 증가가 미미하였다. 고급산화 공정별 아세트산 분해율은$UV/H_2O_2/Fe^{2+}$ 공정은 55%, $O_3/H_2O_2$ 공정 및 $UV/O_3/H_2O_2$ 공정은 66%, $UV/O_3/H_2O_2/Fe^{2+}$ 공정은 64%이었다.

철, 구리, 은 첨착활성탄을 이용한 브롬산염의 제거 (Removal of Bromate by Iron, Copper and Silver Impregnated Activated Carbon)

  • 최성우;박승조
    • 대한환경공학회지
    • /
    • 제28권2호
    • /
    • pp.178-182
    • /
    • 2006
  • 오존으로 상수처리시 생성되는 소독부산물로써 독성이 강한 브롬산염을 철, 구리, 은 첨착활성탄을 이용하여 제거할 목적으로 회분식과 연속식으로 실험하였다. 활성탄 주입량별 브롬산염 제거 실험에서 각각의 활성탄을 0.1, 0.3, 0.5, 1.0 g씩 주입하여 240분 반응시킨 결과 브롬산염의 제거량은 주입량에 비례하였다. 그리고 산 처리한 활성탄을 사용할 때에는 브롬산염 제거 효율이 약 20%정도 증대되었다. 철, 구리, 은 첨착활성탄은 일반 활성탄보다 약 $30{\sim}50%$ 정도 제거 효율이 좋았으며 특히 철 첨착활성탄은 브롬산염을 약 92%제거하였다. 일반 활성탄을 이용하여 브롬산염을 제거하였을 경우 약 $0.02{\sim}0.45mg\;{BrO_3}^-/g$ AC이였지만 철, 구리, 은 첨착활성탄은 약 $0.9{\sim}1.5mg\;{BrO_3}^-/g$이었다. 연속식 칼럼 반응에서 브롬산염 유입량을 $15.6{\sim}46.8mL/min$으로 변화시켜 EBCT를 1, 2, 3 분으로 실험한 결과 96, 180, 252 시간에서 파과 현상을 보였다.

오존수 산화를 이용한 활성탄 흡착탑의 현장 재생 시 흡착용량 및 구조특성의 변화 (Changes of Adsorption Capacity and Structural Properties during in situ Regeneration of Activated Carbon Bed Using Ozonated Water)

  • 이진주;이기세
    • 공업화학
    • /
    • 제31권3호
    • /
    • pp.341-345
    • /
    • 2020
  • 하폐수처리 및 정수처리에 사용되는 활성탄 흡착 공정에서 기존의 활성탄 열재생법 비해 활성탄 손실과 불완전 연소로 인한 오염물질 발생도 적으며, 사용 활성탄의 인발-재생-재충진에 소요되는 시간의 절약이 가능한 재생 방법으로 오존수를 이용한 in situ regeneration에 대한 기초연구를 수행하였다. 활성탄 흡착 컬럼 상에서 페놀(phenol) 및 PEG를 흡착 파과 시킨 후 오존수 접촉으로 흡착물질을 분해 제거하는 흡착-재생 싸이클을 반복하였다. 오존수 접촉에 의한 재생 횟수가 증가할수록 페놀 흡착용량은 어느 정도 감소하지만, 일정 수준으로의 감소 후에는 구조 변화가 안정화되어 추가적인 감소가 일어나지 않았다. 흡착 용량이 감소하는 이유는 오존과의 반응에 의해 활성탄의 미세공 크기가 증가하면서 비표면적이 감소하기 때문으로 나타났다. 이러한 세공 크기의 변화와 비표면적의 변화로 인하여 재생 후 in-pore adsorption이 우세한 페놀과 같은 저분자량 물질의 흡착효율은 감소하게 되나 external adsorption 비율이 큰 PEG와 같은 고분자량 물질의 흡착효율은 크게 영향을 받지 않았다. 세공 크기 및 비표면적의 변화는 오존수와의 접촉시간이 길어질수록 심화되므로 제거하려는 물질의 크기를 고려하고 접촉시간을 조절함으로써 흡착 효율의 유지를 제어하는 것이 필요하다.

부식질의 광산화 및 오존산화에 있어서의 분자량 크기분포 변화 특성에 관한 연구 (A Study of Molecular Size Distributions of Humic Acid by Photo-Oxidation and Ozonation)

  • 김종부;김계월;이동석
    • 분석과학
    • /
    • 제16권4호
    • /
    • pp.292-298
    • /
    • 2003
  • 고급산화공정 (AOP)인 UV시스템과 오존시스템을 이용하여 부식산의 광산화 및 오존 산화를 실시한 후, 용존유기탄소 (DOC)의 제거 효율에 따른 분자량 분포 특성을 한외여과법을 이용하여 조사하였다. 반응 전의 부식산의 분자량 분포는 30,000 daltons 이상의 고분자 물질이 41.5%로 가장 큰 부분을 차지하고 있었으며, 500 dalton 이하의 저분자 물질은 15.2%로 상대적으로 낮은 분포율을 보였다. UV 조사 시간이 증가함에 따라 고분자에서 저분자로의 전환율이 증가하였다. 특히, 30,000 daltons 이상의 고분자물질이 생물학적으로 처리 효율이 높은 500 daltons 이하의 저분자물질로 전환되는 비율은 UV 단독조사 (35.3%)에 비교해 촉매가 첨가된 경우인 $UV/TiO_2$$UV/H_2O_2$ 시스템에서 각각 58.9%와 87.7%으로 증가하였다. 오존 시스템에서는 500 daltons 이하의 저분자로의 전환율보다는 3,000~30,000 daltons의 중간크기 분자량 분포율이 증가하였다. 오존 단독 시스템에서는 10,000~30,000 daltons 크기의 분포율이 최종 60분 처리시 41.5%로 가장 높게 나타났으며, $O_3/H_2O_2$ 시스템에서는 10,000~30,000 daltons과 3,000~10,000 daltons이 각각 38.9%, 26.2%으로 높은 분포율을 나타냈다. 이상에서 얻어진 결과를 토대로 수중 부식산의 보다 효과적인 제거를 위하여, $UV/H_2O_2$, $UV/TiO_2$$O_3$, $O_3/H_2O_2$ 시스템 등과 연계하여 처리할 수 있는 단위공정을 제안하였다.

폴리에틸렌 및 폴리프로필렌 기구·용기·포장 유래 산화방지제 분석 및 안전성평가 (Analysis and Safety Assessment of Antioxidants Migrated from Polyethylene and Polypropylene Food Packaging Materials into Food Simulants)

  • 최희주;최재천;배인애;박세종;김미경
    • 한국식품위생안전성학회지
    • /
    • 제32권5호
    • /
    • pp.424-433
    • /
    • 2017
  • 본 연구에서는 식품용 기구 및 용기 포장으로부터 식품유사용매로 이행되는 10종의 산화방지제(butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), Cyanox 2246, 425 and 1790, Irgafos 168, 및 Irganox 1010, 1330, 3114 and 1076)의 분석법을 확립하였다. 식품유사용매 중 물, 4% 초산, 50% 에탄올의 경우 hydrophiliclipophilic balance (HLB) 카트리지로 고체상 추출(SPE, Solid Phase Extraction)을 하였고, n-헵탄의 경우 이소프로필알콜로 희석하여 HPLC-UVD (276 nm)로 산화방지제의 이행량을 분석하였다. 확립된 분석법으로 위생백, 지퍼백, 우유팩, 주스팩, 가공식품용 포장지, 밀폐용기, 일회용기 등 국내 유통 폴리에틸렌(78건) 및 폴리프로필렌(122건) 재질의 식품용 기구 및 용기 포장 200건으로부터 식품유사용매로 이행되는 10종의 산화방지제 이행량 조사 결과, 총 78건의 폴리에틸렌 식품용 기구 및 용기 포장 중 5건에서 Irganox 1010이 ND~1.444 mg/L 검출되었고, 총 122건의 폴리프로필렌 식품용 기구 및 용기 포장 중 41건에서 Irganox 1010이 ND~3.106 mg/L, 28건에서 Irganox 1076이 ND~4.752 mg/L, 34건에서 Irgafos 168이 ND~3.635 mg/L 검출되어 총 3종의 산화방지제가 검출되었다. 검출된 Irganox 1010, Irganox 1076, Irgafos 168에 대해 일일추정섭취량(EDI)을 계산하고 일일섭취한계량(TDI)과 비교하여 위해도를 평가한 결과, 폴리에틸렌 재질 중 Irganox 1010은 TDI 대비 0.0067%, 폴리프로필렌 재질 중 Irganox 1010, Irganox 1076, Irgafos 168은 TDI 대비 0.0073%, 0.1800%, 0.0200%로 안전한 수준임을 확인하였다. 본 연구에서 확립된 폴리에틸렌 및 폴리프로필렌 식품용 기구 및 용기 포장 중 산화방지제 분석법 및 안전성 평가 결과는 앞으로 기구 및 용기 포장의 안전관리를 위한 과학적인 근거자료로 활용될 것으로 판단된다.