• 제목/요약/키워드: Ozone Oxidation Reaction

검색결과 85건 처리시간 0.022초

오존접촉산화 공정과 Peroxone AOP 공정을 이용한 염색폐수방류수 고도산화 처리특성 연구 (Study on Treatment Characteristic of Advanced Oxidation Process using Ozone Oxidation and Peroxone AOP Process for Waste Dyeing Water Effluent Treatment)

  • 박준형;신동훈;류승한;조석진;이상헌
    • 한국염색가공학회지
    • /
    • 제23권4호
    • /
    • pp.274-283
    • /
    • 2011
  • Effect of pH on ozone oxidation and peroxone AOP(Advanced Oxidation Process) process was analyzed and the optimal efficiency for both processes was obtained at pH 7.5. In case of ozone oxidation process, the efficiencies of color, $COD_{Mn}$ and $BOD_5$ removal were measured to 93%, 70% and 89% at a reaction time of 50 min(ozone dosage of 111.67mg/$\ell$). When reaction time increased to 90 min(ozone dosage of 201mg/$\ell$), the efficiencies of color, $COD_{Mn}$ and $BOD_5$ removal were increased by 3~5 %, indicating that the increment of removal efficiency was insignificant considering longer reaction time. Similarly, the ozone/$H_2O_2$ ratio was optimized to 0.5 for peroxone AOP process. Removal efficiencies of color, $COD_{Mn}$ and $BOD_5$ were measured 95%, 81% and 94% at a reaction time of 50 min(ozone dosage of 111.67mg/$\ell$). When reaction time increased to 90min(ozone dosage of 201mg/$\ell$), the removal efficiency of color, CODMn, and BOD5 increased slightly by 1~5%.

오존산화에 의한 반응성염료의 제거 및 THM생성능의 제어 (Ozonation of Reactive Dyes and Control of THM Formation Potentials)

  • 한명호;김범수;허만우
    • 한국염색가공학회지
    • /
    • 제16권2호
    • /
    • pp.34-40
    • /
    • 2004
  • This study was conducted to remove the reactive dyes by the Ozone demand flask method which are one of the main pollutants in dye wastewater, Ozone oxidation of three kinds of the reactive dyes was examined to investigate the reactivity of dyes with ozone, Trihalomethane formation potentials(THMFPs), competition reaction and ozone utilization on various conditions for single- and multi-solute dye solution. Concentration of dyes was decreased continuously with increasing ozone dosage in the single-solute dye solutions. THMFPs per unit dye concentration were gradually increased with increase of ozone dosage. By the result of THMFPs change with reaction time, THMFPs were rapidly decreased within 1 minute in single-solute dye solutions. Dey were increased after 1 minute of reaction time, and then they were consistently decreased again after longer reaction time. Competition quotient values were calculated to investigate the preferential oxidation of individual dyes in multi-solute dye solutions. Competition quotients$(CQ_i)$ and values of the overall utilization efficiency, no$_3$, were increased at 40mg/1 of ozone dosage in multi-solute dye solutions.

산화제를 이용한 아닐린 폐수처리 (Treatment of Aniline-contaminated Wastewater using Oxidation Reagent)

  • 김광렬;신진환
    • 환경위생공학
    • /
    • 제12권2호
    • /
    • pp.51-57
    • /
    • 1997
  • This work carried out the removal of aniline by wet oxidation in aqueous solutions like a industrial wastewater using Ozone, UV, and Ozone-UV . The main features of this experiment are as follows: the aniline was decomposed by OH and HO$_{2}$ radicals which produced from the reaction of water with UV and Ozone, when the Ozorie and Ozone-UV used the aniline was decomposed completely. The decomposition of aniline was very fast reaction and the reaction times were within 10min. and 20min. in case of for Ozone Ozone-UV respectively. Assumed simplified reaction mechanism from the aniline oxidation model, and the we are calculated the theoretical reaction rate constants by computer simulation, and then compared with experimental data. We suggest that this simulation program is applicable to estimate of the aniline decaying concentration and removal efficiency of aniline - contaminated wastewater.

  • PDF

오존산화에 의한 염색체수의 색도 제거에 관한 연구 (A Study on Removal of Color in Dyeing Wastewater by Ozone Oxidation)

  • 정순형;최준호
    • 환경위생공학
    • /
    • 제18권4호
    • /
    • pp.45-51
    • /
    • 2003
  • This study was conducted to remove the color in dyeing wastewater by ozone oxidation process, and the results were summarized as follows ; The 18.3% of BOD and 56.3% TOC were removed as decreasing with pH 1 in dyeing wastewater, containing the polyester reducing process. It showed that terephthalic acid was precipitated at low pH. The color of dyeing wastewater was removed by the first order reaction, and the reaction rate constants at pH 3, 7, 12 were investigated $0.234{\;}min^{-1},{\;}0.215{\;}min^{-1}{\;}and{\;}0.201{\;}min^{-1}$ respectively. It showed that color was more effectively removed with direct reaction of ozone than radical reaction(non-direct reaction). As increasing of the water temperature, the reaction rate constants were increased slightly. It indicated that activity of ozone was improved at high water temperature.

오존 및 오존/UV 산화법을 이용한 휴믹산의 분해와 THM 발생능의 감소 (Decomposition of Humic Acid and Reduction of THM Formation Potential by Ozone and Combined Ozone/Ultraviolet Oxidation)

  • 박주석;박태진;권봉기
    • 상하수도학회지
    • /
    • 제10권4호
    • /
    • pp.55-63
    • /
    • 1996
  • This research was based on comparing ozonation with combined ozone/ultraviolet oxidation through the methods of reducing THM produced during water treatment. The results were as follows ; 1. The decline of THM concentration was appeared according as ozone dosage increases with ozonation and combined ozone/ultraviolet oxidation. The more effective method was the treatment of irradiating UV then ozonation. In the beginning of reaction the decline rate of THM formation potential was low, I thought it was because that the reaction of ozone and humic acid needed times to be steady state, or that THM formation potential existed according to humic acid. 2. The effect of combined ozone/ultraviolet oxidation when ozone dosage was 4.2mg/L min was almost the same that of ozonation when ozone dosage was 8.6mg/L min. 3. In experiment of TOC decline through ozonation and combined ozone/ultraviolet oxidation, TOC concentration was also dropped according to increasing ozone dosage and the more effective results were showed in treatment of irradiating UV than ozonation. But the similar TOC remove rates were showed in experiment of changing with ozone dosage during combined ozone/ultraviolet oxidation TOC remove rates were low in proportion to the remove rates of THM formation potential, it was considered that humic acid was made low molecule itself though ozonation and ozone/ultraviolet oxidation. Moreover, the high degree of remove efficiency will be get though the treatment of activated carbon of GAC treatment after combined ozone/ultravilet oxidation.

  • PDF

Bacillus subtilis를 이용한 폐수처리 효과연구: 오존의 영향을 중심으로 (Study of wastewater-treatment's efficiency using Bacillus subtilis: with an effect of ozonation)

  • 박영규
    • 환경위생공학
    • /
    • 제17권4호
    • /
    • pp.29-38
    • /
    • 2002
  • Advanced oxidation of wastewater was studied with a purpose to remove TOC and color by the ozone-assisted Fenton reaction. The optimal conditions were determined by hydrogen peroxide and ozone concentrations. Experimental results indicate that the ozone treatment after Fentons process was found to provide very efficient removal efficiency in the process, avoiding the exclusive ozone treatment. The combined process of ozone in the Fenton oxidation respectively was increased removal efficiences of 10.7% in comparison with exclusive Fenton oxidation. Also, the treatments of ozone after Fenton's oxidation respectively had increased the removal efficiences of 16.%. As a result, the treatment of ozone after Fentons oxidation had the best removal efficiency of approximately 96%. Removal efficiency of color was significantly increased as mush as 26% by the advanced Fenton's oxidation in comparison with exclusive Fenton's oxidation. The removal efficiencies in the biological treatment using Bacillus subtilis after Fenton's oxidation and after Fenton's and ozone's oxidation were increased by 14% and 19% respectively. Although these combined Bacillus subtilis-assisted Fenton's oxidation was determined to be effective method to treat the dyeing wastewater in an economic point of view, the choice of wastewater treatment can be varied depending on water quality.

Analysis on an Oxidation-Reduction Reaction of Photocatalytic Plasma Complex Module

  • KIM, Young-Do;KWON, Woo-Taeg
    • 웰빙융합연구
    • /
    • 제5권2호
    • /
    • pp.21-27
    • /
    • 2022
  • Purpose: This study is about photocatalytic technology and plasma oxidation-reduction technology. To the main cause of exposure to odor pollution, two deodorization techniques were applied to develop a module with higher removal efficiency and ozone reduction effect. Research design, data and methodology: A composite module was constructed by arranging two types of dry deodorization equipment (catalyst, adsorbent) in one module. This method was designed to increase the responsiveness to the components of complex odors and the environment. standard, unity, two types of oxidizing photo-catalyst technology and plasma dry deodorization device installed in one module to increase the potential by reduction to 76% of ozone, 100%, and 82%. Results: The complex odor disposal efficiency was 92%. Ammonia was processed with 50% hydrogen sulfide and 100% hydrogen sulfide, and ozone was 0.01ppm, achieving a target value of 0.07ppm or less. The combined odor showed a disposal efficiency of 93%, ammonia was 82% and hydrogen sulfide was 100% processed, and ozone achieved a target value of 0.07 ppm or less. Conclusions: Ozone removal efficiency was 76% by increasing Oxidation-Reduction Reaction(ORR). The H2S removal efficiency of the deodorizer was higher than that of the biofilter system currently used in sewage disposal plants.

오존산화를 이용한 폐광산배수 내 용존 중금속 제거에 관한 연구 (Removal of Dissolved Heavy Metals in Abandoned Mine Drainage by Ozone Oxidation System)

  • 서석호;안광호;이정규;김건중;주경훈;라영현;고광백
    • 한국물환경학회지
    • /
    • 제26권5호
    • /
    • pp.725-731
    • /
    • 2010
  • This study was to evaluate the ozone oxidation of dissolved Fe, Mn, $SO{_4}^{2-}$ ions and color in abandoned mining drainage by conducting a bench-scale operation at various reaction times in an ozone reactor. The influent was collected from an abandoned mine drainage (AMD) near the J Mine in Jungsungun, Kangwon Province. The ozone reactor was operated at ozone reaction times of 10, 20 and 30 min with ozone doses of 0.0 and $2.4g\;O_3/hr$. Samples from each effluent from subsequent sand filtration were regularly collected and analyzed for pH, Fe, Mn, Al, Cr, Hg, $SO{_4}^{2-}$, alkalinity, color, ORP, TDS and EC. The effluent concentrations of Fe and Mn from the sand filter were less than 0.1 mg/L, which were below the concentrations on Korean drinking water quality standards (Fe, Mn < 0.30 mg/L). The influent $SO{_4}^{2-}$, concentrations were not noticeably changed during this ozone oxidation. Cr and Hg in the raw wastewater from the abandoned mining drainage were not detected in this study. The experimental result shows that the ozone oxidation of dissolved heavy metals and subsequent sand filtration of metal precipitates are desirable alternative for removing heavy metals in AMD.

CRDS Study of Tropospheric Ozone Production Kinetics : Isoprene Oxidation by Hydroxyl Radical

  • Park, Ji-Ho
    • 한국환경보건학회지
    • /
    • 제35권6호
    • /
    • pp.532-537
    • /
    • 2009
  • The tropospheric ozone production mechanism for the gas phase additive oxidation reaction of hydroxyl radical (OH) with isoprene (2-methyl-1,3-butadiene) has been studied using cavity ring-down spectroscopy (CRDS) at total pressure of 50 Torr and 298 K. The applicability of CRDS was confirmed by monitoring the shorter (~4%) ringdown time in the presence of hydroxyl radical than the ring-down time without the photolysis of hydrogen peroxide. The reaction rate constant, $(9.8{\pm}0.1){\times}10^{-11}molecule^{-1}cm^3s^{-1}$, for the addition of OH to isoprene is in good agreement with previous studies. In the presence of $O_2$ and NO, hydroxyl radical cycling has been monitored and the simulation using the recommended elementary reaction rate constants as the basis to OH cycling curve gives reasonable fit to the data.

The Removal of Petroleum Hydrocarbon from Fine Soil in Soil Washing Water using Advanced Oxidation Processes

  • Jang, Gwan-Soon
    • 한국토양비료학회지
    • /
    • 제47권5호
    • /
    • pp.362-367
    • /
    • 2014
  • This study was performed to test the applicability of the ozone/hydroxy radical reaction system, which applied advanced oxidation processes, to remove total petroleum hydrocarbon (TPH) from the fine soil in washing water of the soil washing process. Removal efficiency was tested on 40 L of washing water in a pilot reaction tank. Fine soil contaminated with $800mg\;kg^{-1}$ TPH was prepared at 5% and 10% suspended solids. Testing conditions included ozone/hydroxy radical flow rates of 40, 80, and $120L\;min^{-1}$, and processing time of 2 to 12 hours. The removal efficiency of petroleum hydrocarbon from water waster by ozone/hydroxy radical was increased with higher flow rates and lower percentages of suspended solids. Optimal efficiency was achieved at $80L\;min^{-1}$ flow rate for 4 hours for the 5% suspended solids, and $120L\;min^{-1}$ for 6 hours for the 10% suspended solids. These results verified the efficiency of hydroxy radical in removing TPH and the applicability of the ozone/hydroxy radical reaction system in the field.