• Title/Summary/Keyword: Oxygen-Enriched

Search Result 133, Processing Time 0.027 seconds

Distinct Bacterial and Fungal Communities Colonizing Waste Plastic Films Buried for More Than 20 Years in Four Landfill Sites in Korea

  • Joon-hui Chung;Jehyeong Yeon;Hoon Je Seong;Si-Hyun An;Da-Yeon Kim;Younggun Yoon;Hang-Yeon Weon;Jeong Jun Kim;Jae-Hyung Ahn
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1561-1572
    • /
    • 2022
  • Plastic pollution has been recognized as a serious environmental problem, and microbial degradation of plastics is a potential, environmentally friendly solution to this. Here, we analyzed and compared microbial communities on waste plastic films (WPFs) buried for long periods at four landfill sites with those in nearby soils to identify microbes with the potential to degrade plastics. Fourier-transform infrared spectroscopy spectra of these WPFs showed that most were polyethylene and had signs of oxidation, such as carbon-carbon double bonds, carbon-oxygen single bonds, or hydrogen-oxygen single bonds, but the presence of carbonyl groups was rare. The species richness and diversity of the bacterial and fungal communities on the films were generally lower than those in nearby soils. Principal coordinate analysis of the bacterial and fungal communities showed that their overall structures were determined by their geographical locations; however, the microbial communities on the films were generally different from those in the soils. For the pulled data from the four landfill sites, the relative abundances of Bradyrhizobiaceae, Pseudarthrobacter, Myxococcales, Sphingomonas, and Spartobacteria were higher on films than in soils at the bacterial genus level. At the species level, operational taxonomic units classified as Bradyrhizobiaceae and Pseudarthrobacter in bacteria and Mortierella in fungi were enriched on the films. PICRUSt analysis showed that the predicted functions related to amino acid and carbohydrate metabolism and xenobiotic degradation were more abundant on films than in soils. These results suggest that specific microbial groups were enriched on the WPFs and may be involved in plastic degradation.

Nitrogen-Oxygen Separation Characteristics by Polyimide Membrane System for Controlled Atmosphere Storage (CA저장을 위한 폴리이미드 막 시스템의 질소-산소 분리특성)

  • 이호원;현명택;고정삼
    • Food Science and Preservation
    • /
    • v.5 no.3
    • /
    • pp.239-246
    • /
    • 1998
  • Polyimide membrane system was designed for manufacturing nitrogen-enriched gas, and basic technical data was suggested for appling this system to controlled atmosphere storage. The permeability characteristics of pure oxygen and nitrogen could be explained by dual-mode sorption model. There was substantial decrease in the permeation rates of oxygen, which is the more permeable gas, through the polyimide membrane due to the presence of nitrogen in comparison with pure oxygen. However, the permeation rates of nitrogen was increased by the presence of oxygen. The ideal separation factor was in the range of 5 to 6 in the range of temperature and pressure difference studied, and the separation factor of air was lower than the ideal separation factor. The increase of ideal separation factor with increasing temperature is due to the fact that the activation energy for oxygen is larger than that for nitrogen. Nitrogen concentration decreased rapidly with increasing product recovery, and it was found that this is a major operating factor to obtain nitrogen concentration required for controlled atmosphere storage. A relation equation, by which nitrogen concentration in storehouse can be predicted, was suggested under the establishment of a hypothetical model for controlled atmosphere storage process using polyimide membrane system.

  • PDF

Characteristics of SrCo1-xFexO3-δ Perovskite Powders with Improved O2/CO2 Production Performance for Oxyfuel Combustion

  • Shen, Qiuwan;Zheng, Ying;Luo, Cong;Zheng, Chuguang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1613-1618
    • /
    • 2014
  • Perovskite-type oxides are promising oxygen carriers in producing oxygen-enriched $CO_2$ gas stream for oxyfuel combustion. In this study, a new series of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ (x = 0.2, 0.4, 0.6, 0.8) was prepared and used to produce $O_2/CO_2$ mixture gas. The phase, crystal structure, and morphological properties of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ were investigated through X-ray diffraction, specific surface area measurements, and environmental scanning electron microscopy. The oxygen desorption performance of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ was studied in a fixed-bed reactor system. Results showed that the different x values of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ have no obvious effects on crystalline structure. However, the oxygen desorption performance of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ is improved by Co doping. Moreover, $SrCo_{0.8}Fe_{0.2}O_{3-{\delta}}$ synthesized via a new EDTA method has a larger BET surface area ($40.396m^2/g$), smaller particle size (48.3 nm), and better oxygen production performance compared with that synthesized through a liquid citrate method.

The Study of Cyclophosphamide Metabolite $^{15}N$ and $^{17}O$ Phosphoramide Mustards (항암제인 Cyclophosphamide의 중간체인 $^{15}N$$^{17}O$-phosphoramide Mustards의 합성)

  • Koo, Kyo-Im;Ryem, Kon
    • YAKHAK HOEJI
    • /
    • v.38 no.4
    • /
    • pp.455-461
    • /
    • 1994
  • Each nitrogen and oxygen site isotope enriched the cyclophosphamide metabolite phosphoramide mustard was synthesized. Reaction of N,N-bis(2-chloroethyl)phosphoramidic dichloride$[Cl_2P(O)N(CH_2CH_2Cl)_2]$ with benzyl alcohol and ammonia gave N,N-bis(2-chloroethyl)phosphorodiamidic acid phenylmethyl ester $[BzO(H_2N)P(O)N(CH_2CH_2Cl)_2]$. Catalytic hydrogenation of this benzyl ester followed by the addition of cyclohexylamine provided PM. Incorporation of $^{15}NH_3$ into this general scheme gave PM with a $^{15}NH_2$ moiety. Glycine-$^{15}N$ was converted to bis(2-chloroethyl)amine-$^{15}N$ hydrochloride which, in turn, provided for N,N-bis(2-chloroethyl)phosphorodiamidic-$^{15}N$ dichloride. Use of this compound in the general synthetic pathway yielded PM CHA with $^{15}N$ in the mustard moiety. $^{17}O$-Enriched PM was generated through the use of benzyl alcohol-$^{17}O$. To obtain the alcohol, labelled benzaldehyde was made by exchange with $^{17}OH_2$ and was then reduced with sodium borohydride.

  • PDF

How are the Spatio-Temporal Distribution Patterns of Benthic Macrofaunal Communities Affected by the Construction of Shihwa Dike in the West Coast of Korea? (시화방조제의 건설은 저서동물군집의 시${\cdot}$공간 분포에 어떠한 영향을 미쳤는가?)

  • HONG Jae-Sang;JUNG Rae-Hong;SEO In-Soo;YOON Kon-Tak;CHOI Byong-Mee;YOO Jae-Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.882-895
    • /
    • 1997
  • Changes in the benthic communities have been studied to investigate the environmental effects before and after the construction of Shihwa Dike in the West coast of Korea. It is suggested that sequential changes in macrofaunal assemblages progressed in two sucressional directions. In the Shihwa lake under the influence of organic enrichment. First, the appearance of 'azoic tone' or 'grossly polluted zone' developed in the area of less than 6 m in depth resulted from the severe dissolved oxygen depletion due to the eutrophication from the increased organic loading. Second, the 'polluted zone' characterized by the proliferation of the opportunistic species in organically enriched area, was found in the vicinity of the industrial discharges and nearby fluvial inputs. This benthic community succession in the Shihwa lake seemed to be caused by the various ecological events such as an eutrophication in this organically enriched environment after construction of the dike and other physico-chemical parameters like salinity and dissolved oxygen in the bottom water, which may be influenced by the irregular surface water discharge and dilution by outer seawater inflow through the water gate of the dike. On the other hand, the benthic communities in the outside of the dike showed that the species richness was more than doubled and the abundance increased almost seven times more than that before the dike construction. This may be a typical characteristics of the initial phase in benthic eutrophication, suggesting that an increased organic input area may have been reponsible for this faunal change in the study area.

  • PDF

Quality Control of Photosystem II during Photoinhibition

  • Yamamoto, Yasusi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.55-58
    • /
    • 2002
  • The reaction center Dl protein of photosystem II is the target of photodamage by excess illumination. The Dl protein is damaged by reactive oxygen species generated by photochemical reactions and then degraded by specific proteolytic enzymes. We found that the Dl protein also cross-links with the surrounding polypeptides, such as D2 and CP43 in isolated thylakoids or photosystem II-enriched membranes from spinach under the illumination with strong visible light. The cross-linking was observed in spinach leaf discs as well when they were illuminated at higher temperature (40°C). It was also shown that the cross-linked products are digested efficiently by a protease(s) in the stroma. Thus the cross-linking/digestion processes of the Dl protein seem to comprise a new pathway in the turnover of the photodamaged Dl protein. It should be noted, however, that the cross-linked products of the Dl protein and CP43 induced by endogenous cationic radicals in the donor-side photoinhibition are resistant to proteolytic digestion. Accumulation of these cross-linked products in the thylakoids may lead to the decay of the function of chloroplasts and finally to the death of plant cells. Thus, we suggest that the quality control of photosystem II, especially removal of the cross-linked products of the Dl protein, is crucial for the survival of chloroplasts under the light stress.

  • PDF

The Investigation of the Han River Eutrophication (한강의 부영양화에 대한 조사연구)

  • 신정식;정종흡;나규환
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.4
    • /
    • pp.77-84
    • /
    • 1999
  • Most river quality problems are generated by pollutants which are discharged into the river as a consequence of human activities. And eutrophication occurs when water is over enriched with nutrients, principally nitrate and phosphate. Both these nutrients are found in many waste products, especially sewage even when the waste is treated. Eutrophication is concerned in lakes, but it also causes problems in river. Wide growth of Phytoplankton in rivers, leads to blockage of channels, but the main concern is deoxygenation because of the increase in plant life's demand for oxygen in revers. Fish, plant and animals die due to lack of oxygen. The increase of algae floating on the tops of water looks ugly and has attracted public attention and concern in recent years. One way of controlling eutrophication is to restrict the amount of waste carrying nitrate or phosphate from entering the water in the first place. another way is to remove it from the water after it has been entered. This study was carried out to investigate on the trophic state, nutrients and Chlorophyll-a concentration in the Han River. The results were as follows:1. Concentrations of total nitrogen were 2.208~9.221(5.133)mg/$\ell$2. Concentrations of total phosphate were 0.045~0.614(0.195)mg/$\ell$3. Chlorophyll-a concentration were $0.0-25.3(9.6)mg/m^3$.4. The correlation coefficient between T-P and Chlorophyll-a concentration was r=-0.856 at Sungsan sampling site.5. The correlation coefficient was r=-0.578~-0.767, between Paldang Dam outflow and Chlorophyll-a concentration at all sampling sites.

  • PDF

Hydrogen Gas Production from Methane Reforming Using Oxygen Enriched Compression Ignition Engine (산소부화 압축착화기관을 이용한 메탄으로부터 수소 생산)

  • Lim, Mun-Sup;Hong, Sung-In;Hong, Myung-Seok;Chun, Young-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.5
    • /
    • pp.557-562
    • /
    • 2007
  • The purpose of this paper is to investigate the reforming characteristics and maximum operating condition for the hydrogen production by methane reforming using the compression ignition engine induced partial oxidation. An dedicated compression engine used for methane reforming was decided operating range. The partial oxidation reforming was investigated with oxygen enrichment which can improve hydrogen production, compared to general reforming. Parametric screening studies were achieved as $O_2/CH_4$ ratio, total flow rate, and intake temperature. When the variations of $O_2/CH_4$ ratio, total flow rate, and intake temperature were 1.24, 208.4 L/min, and $400^{\circ}C$, respectively, the maximum operating conditions were produced hydrogen and carbon monoxide. Under the condition mentioned above, synthetic gas were $H_2\;22.77{\sim}29.22%,\;CO\;21.11{\sim}23.59%$.

Petrology and Geochemistry of Peridotite Xenoliths from Miocene Alkaline Basalt Near the Mt. Baekdu Area (백두산 지역의 마이오세 알칼리 현무암에 포획된 페리도타이트의 암석학적/지화학적 특성)

  • Kim, Eunju;Park, Geunyeong;Kim, Sunwoong;Kil, Youngwoo;Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.311-325
    • /
    • 2017
  • Peridotite xenoliths in middle Miocene alkaline basalt from the Mt. Baekdu area are mainly anhydrous spinel lherzolites, displaying coarse-grained protogranular texture. These xenoliths have late-stage secondary orthopyroxene replacing olivine as the metasomatic mineral and glass formed along the grain boundaries. The studied xenoliths are characterized by the high $Mg{\sharp}[=100{\times}Mg/(Mg+Fe_{total})$ atomic ratio] of olivine, orthopyroxene and clinopyroxene (89~92) and the $Cr{\sharp}[=100{\times}Cr/(Cr+Al)$ atomic ratio] of spinel (10~29). Based on major-element data, the studied xenoliths are similar to those from the abyssal peridotites. Clinopyroxenes of the xenoliths are mostly enriched in incompatible trace elements, exhibiting two types of REE patterns: (1) LREE-depleted with $(La/Yb)_N$ of 0.1~0.2 and $(La/Ce)_N$ of 0.4~0.8. (2) LREE enriched with $(La/Yb)_N$ of 2.2~3.8 and $(La/Ce)_N$ of 1.2~1.6. The calculated equilibrium temperatures and oxygen fugacities resulted in $920{\sim}1050^{\circ}C$ and ${\Delta}fO_2(QFM)=-0.8{\sim}0.2$, respectively. It is suggested that the Mt. Baekdu peridotite xenoliths represent residues left after variable degrees of melt extraction(less than 15 vol%), which was subsequently subjected to different degrees of modal/cryptic metasomatism by silica- and LREE-enriched fluids (or melts).

Sorption and Permeation Characteristics of Oxygen and Nitrogen for Polysulfone Hollow-Fiber Membrane (폴리폰설 중공사막에 대한 산소와 질소의 수착 및 투과특성)

  • 조정식;김종수;이광래
    • Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.25-35
    • /
    • 1999
  • The sorption and permeation experiments with $O_2$ and $N_2$ were performed with poly sulfone hollow-fiber membrane to obtain oxygen-enriched air. Sorption of $O_2$ on poly sulfone membrane was 1.5'||'&'||'not;2.0 times higher than that of N2. Sorption of oxygen and nitrogen in poly sulfone membrane was described satisfactorily with "dual-mode sorption model". In the low pressure range below 3kgr!cm', about 85% of total sorption was Langmuir-type sorption and only 15% was Henry-type sorption. In the higher pressure above 3kgf/${cm}^2$, Langmuir sorption sites became almost saturated and reached asymptote, and the increase in total sorption with pressurizing might be due to the Henry~type sorption. The ideal separation factor ( P $O_2$/ P $N_2$) was in the range of 2~4, while the actual separation factor for the mixture was reduced to the value of 1.7~2.2.2.2.

  • PDF