• Title/Summary/Keyword: Oxygen uptake rate

Search Result 184, Processing Time 0.036 seconds

High-rate Denitrifying Process Based on Methanol and Characteristics of Organic Carbon Uptake (메탄올 기반 탈질 공정의 고속화 및 탄소 섭취 특성)

  • Park, Suin;Jeon, Junbeom;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.581-591
    • /
    • 2020
  • In this study, two types of reactors were operated to examine the properties of methanol uptake under the high-rate denitrification process. In a sequencing batch reactor, the denitrifying activity was enriched up to 0.80 g-N/g-VSS-day for 72 days. Then, the enriched denitrifying sludge was transferred to a completely stirred tank reactor (CSTR). At the final phase on Day 46-50, the nitrogen removal efficiency was around 100% and the total nitrogen removal rate reached 0.097±0.003 kg-N/㎥-day. During the continuous process, the sludge settling index (SVI30) was stabilized as 118.3 mL/g with the biomass concentration of 1,607 mg/L. The continuous denitrifying process was accelerated by using a sequencing batch reactor (SBR) with a total nitrogen removal rate of 0.403±0.029 kg-N/㎥-day with a high biomass concentration of 8,433 mg-VSS/L. Because the reactor was open to ambient air with the dissolved oxygen range of 0.2-0.5 mg-O2/L, an increased organic carbon requirement of 5.58±0.70 COD/NO3--N was shown for the SBR in comparison to the value of 4.13±0.94 for the test of the same biomass in a completely anaerobic batch reactor. The molecular analysis based on the 16S rRNA gene showed that Methyloversatilis discipulorum and Hyphomicrobium zavarzinii were the responsible denitrifiers with the sole organic carbon source of methanol.

Variations in Nutrients & $CO_2$ Uptake Rates of Porphyra yezoensis Ueda and a Simple Evaluation of in situ N & C Demand Rates at Aquaculture Farms in South Korea (방사무늬김(Porphyra yezoensis Ueda)의 영양염과 이산화탄소 흡수율 정밀 평가를 통한 양식해역의 질소와 탄소 요구량 산정)

  • Shim, JeongHee;Hwang, Jae Ran;Lee, Sang Yong;Kwon, Jung-No
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.297-305
    • /
    • 2014
  • In order to understand the contribution of seaweed aquaculture to nutrients and carbon cycles in coastal environments, we measured the nutrients & carbon uptake rates of Porphyra yezoensis Ueda sampled at Nakdong-River Estuary using a chamber incubation method from November 2011 to April 2012. It was observed that the production rate of dissolved oxygen by P. yezoensis (n=30~40) was about $68.8{\pm}46.0{\mu}mol\;{g_{FW}}^{-1}h^{-1}$ and uptake rate of nitrate, phosphate and dissolved inorganic carbon (DIC) was found to be $2.5{\pm}1.8{\mu}mol\;{g_{FW}}^{-1}h^{-1}$, $0.18{\pm}0.11{\mu}mol\;{g_{FW}}^{-1}h^{-1}$ and $87.1{\pm}57.3{\mu}mol\;{g_{FW}}^{-1}h^{-1}$, respectively. There was a positive linear correlation existed between the production rate of dissolved oxygen and the consumption rates of nitrate, phosphate and DIC, respectively, suggesting that these factors may serve as good indicators of P. yezoensis photosynthesis. Further, there was a negative logarithmic relationship between fresh weight of thallus and uptake rates of nutrients and $CO_2$, which suggested that younger specimens (0.1~0.3 g) were much more efficient at nutrients and $CO_2$ uptake than old specimens. It means that the early culturing stage than harvesting season might have more possibilities to be developed chlorosis by high rates of nitrogen uptake. However, N & C demanding rates of Busan and Jeollabuk-do, calculated by monthly mass production and culturing area, were much higher than those of Jeollanam-do, the highest harvesting area in Korea. Chlorosis events at Jeollabuk-do recently might have developed by the reason that heavily culture in narrow area and insufficient nutrients in maximum yield season (Dec.~Jan.) due mostly to shortage of land discharge and weak water circulation. The annual DIC uptake by P. yezoensis in Nakdong-River Estuary was estimated about $5.6{\times}10^3\;CO_2$ ton, which was about 0.03% of annual carbon dioxide emission of Busan City. Taken together, we suggest more research would be helpful to gain deep insight to evaluate the roles of seaweed aquaculture to the coastal nutrients cycles and global carbon cycle.

Computer Modeling of Modified Atmosphere Packaging of Peaches (복숭아의 환경기체조절포장을 위한 컴퓨터 모델링)

  • Kim, Jong-Kyoung;Ha, Young-Sun;Lee, Jun-Ho;Lee, Sang-Duk;Kim, Jae-Neung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.9 no.1
    • /
    • pp.33-54
    • /
    • 2003
  • The aim of this study was to develop a model that could be used in the design of modified atmosphere packaging (MAP) for peaches. Respiratory data at 5, 10, $20^{\circ}C$ for peaches were gathered and altered for create useful respiration model. Packaging materials were conventional low density polyethylene and polypropylene with anti-fog, and anti-fungi treatments, and thickness was $30{\mu}m$ and $50{\mu}m$ each. Permeability tests were performed to find their oxygen, carbon dioxide, water vapor transmission rate as increases in temperature. Test results were then converted to logarithm format for MAP modeling. The maximum rate of oxygen uptake increased with increasing temperature. Optimum gas composition in the package system for fruits were set according to literature and upper or lower limits of oxygen and dioxide established. To predict gas composition at certain storage time, weight of fruits, film thickness, film type, and other variables, respiration rate was studied at various storage conditions. The results of tests were used to calculate Cameron's model and converted to a cubic estimation equation. The validity of the model was tested experimentally by observing actual atmospheric changes inside packages. This result of study may be useful for designing dynamic gas exchange MAP systems for similar agricultural products.

  • PDF

Comparative Bioreactor Studies in Terms of Oxygen Transfer between Suspended and Immobilized Fungal Systems for Cyclosporin A Fermentation (Cyclosporin A 생산을 위한 액체배양과 고정화배양의 생물반응기에서의 산소전달 비교 연구)

  • 전계택
    • KSBB Journal
    • /
    • v.9 no.2
    • /
    • pp.211-223
    • /
    • 1994
  • In fermentations with a 4-liter stirred tank bioreactor, a better than two-fold enhancement of the gas-liquid mass transfer coefficient$(k_La)$ in the celite-immobilized fungal cultures of Tolypocladium in flatum over the parallel conventional free-cell was observed at identical biomass concentrations, despite the higher specific oxygen uptake rate of the immobilized fungi during exponential growth. As a result oxygen sufficient conditions, i. e., dissolve oxygen(D.O.) concentrations exceeding 75% air saturation, could be maintained throughout exponential growth period of the immobilized culture, in contrast to the suspended fungal culture, whose D.O. levels fell below 50% air saturation. A linear monotonic dependence of $k_La$ upon impeller agitaion rate was found for both immobilized and conventional cultivation modes over a range of 250 to 550rpm, the slope being a function of biomass concentration for the free but not for the immobilized cell system In contrasts oxygen transfer rate was a much weaker function of aeration rate up to about 2.5 vvm for both culture configurations. Above this level, aeration rate had no further effect on the mass transfer. In addition, the immobilized cultures sustained good morphological and physiological states, leading to almost two times higher cyclosporln A (CyA) productivity overt the parallel free cell system. These experiments suggest that the celite-immobilized fungal system in a stirred tank reactor has considerable promise for scaling up cyclosporin A production in terms of high-density cultivation.

  • PDF

Low Temperature Plasma and/or Protease Treatment of Wool Fiber (양모섬유의 저온플라즈마 및 효소처리)

  • Yoon, Nam-Sik;Lim, Yong-Jin
    • Textile Coloration and Finishing
    • /
    • v.6 no.4
    • /
    • pp.27-33
    • /
    • 1994
  • Wool fabrics were treated with low temperature oxygen plasma and/or protease, and examined for their mechanical and dyeing properties. By plasma-treatment the strength of wool fabric increased and higher rate of weight loss for protease treatment was obtained. When dyed by levelling type acid dye equilibrium dye uptake appeared same, but rate of dyeing increased by the plasma treatment, while, with milling type acid dye, both of them increased greatly in the order of untreatedplasma/protease-treated. It was assumed from the above results that plasma affects the surface of fiber, and enzyme attacks mainly the inner part of fiber. This was confirmed again by scanning electron microscope.

  • PDF

Inter-scale Observation and Process Optimization for Guanosine Fermentation

  • Chu, Ju;Zhang, Si-Liang;Zhuang, Ying-Ping
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2005.06a
    • /
    • pp.233-244
    • /
    • 2005
  • Guanosine fermentation process can be well predicted and analyzed by the proposed state equations describing the dynamic change of a bioreactor. Pyruvate and alanine were found to be characteristically accumulated along with the decline of the guanosine formation rate during the mid-late phase of the process. The enzymological study of the main pathways in glucose catabolism and the quantitative stoichiometric calculation of metabolic flux distribution revealed that it was entirely attributed to the shift of metabolic flux from hexose monophosphate (HMP) pathway to glycolysis pathway. The process optimization by focusing on the restore of the shift of metabolic flux was conducted and the overcoming the decrease of oxygen uptake rate (OUR) was taken as the relevant factor of the trans-scale operation. As a result, the production of guanosinewas increased from 17 g/L to over 34 g/I.

  • PDF

Composting of Water Hyacinth using a Pilot Scale Rotary Drum Composter

  • Singh, Waikhom Roshan;Das, Ayan;Kalamdhad, Ajay
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.69-75
    • /
    • 2012
  • Composting of water hyacinth, mixed with cattle manure, rice husk and sawdust in four different proportions, was performed in a pilot scale rotary drum composter. The physico-chemical characteristics, i.e., temperature, moisture content, pH, electrical conductivity, total organic matter (OM), nitrogen dynamics and nutrients were evaluated during the 20 days composting process. The stabilities of the composts were also investigated with respirometric analysis, i.e., $CO_2$ evolution rates and oxygen uptake rate (OUR). Among all trials, trial 1 (6 water hyacinth, 3 cattle manure, 1 rice husk) indicated the best composting mix, as shown by the highest temperature profile and OM loss, and lowest $CO_2$ evolution rate and OUR.

Production Of Gellan Gum by Pseudomonas elodea (I) -Estimation of Metabolic Parameters and Rheological Properties of Culture Broth- (Pseudomonas elodea에 의한 Gellan Gum 생산(I) -metabolic parsmeter의 추정및 배양액의 유변학적 특성-)

  • 정봉우;박선호
    • KSBB Journal
    • /
    • v.5 no.3
    • /
    • pp.235-240
    • /
    • 1990
  • A quantitative physiological approach has been employed to estimate the metabolic parameters such as specific uptake rates of nutrients and specific production rate in continuous culture of Pseudomonas elodea for gellan gum production. The estimated values of metabolic parameters are used for process improvement. During the exponential growth phase, the specific growth rate was 0.16hr-1 in batch culture. The gellan gum concentration increased up to 0.7g dry weight/100g broth and the apparent viscosity of the culture broth was about 4,500 cp.(72hrs culture). The ratio of specific uptake rate of carbon to that of nitrogen were found to be optimum at about 3.0mg-carbon/mg-nitro-gen. With the improved medium, the maximum gellan production rate, 0.6g dry weight/1/hr, was obtained at D=0.14 hr-1. The shear stresses of culture broth were fairly well correlated with shear rates by using Casson equation and at highly viscous culture broth, oxygen transfer coefficient was greatly reduced.

  • PDF

The Effect of Twenties Female Caffeine Addiction on Cardiorespiratory Capacity (카페인 중독이 20대 성인 여성의 심장호흡기계능력에 미치는 영향)

  • Yoon, Young-Jeoi
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.8
    • /
    • pp.197-202
    • /
    • 2020
  • In this study, we investigate the effect of twenties female caffeine addiction on cardiorespiratory capacity. For this study, we divided 35 female students at H university into caffeine addict group(n=17) and none caffeine addict group(n=18). Measure maximal oxygen uptake, maximal energy consumption and METs using Cycle Ergometer to assess cardiac capacity. Measure peak inspiratory pressure, peak inspiratory flow rate, peak inspiratory capacity, average inspiratory pressure, average inspiratory flow rate, average inspiratory capacity using Power Breathe K5 to assess respiratory capacity. As a result, cardiac capacity showed a statistically significant decrease in maximal oxgen uptake and METs compared caffeine addict group to none caffeine addict group(p<.001). respiratory capacity showed a statistically significant decrease in peak inspiratory pressure(p<.05), peak inspiratory flow rate(p<.01), average inspiratory pressure(p<.01), average inspiratory flow rate(p<.01), compared caffeine addict group to none caffeine addict group. Combining the results of the study, we could see that caffeine addiction reduces the cardiorespiratory capacity in twenties female. Therefore, it could be used as a basis date to prevent caffeine addiction for twenties female.

Association Between Leisure Time Physical Activity, Cardiopulmonary Fitness, Cardiovascular Risk Factors, and Cardiovascular Workload at Work in Firefighters

  • Yu, Clare C.W.;Au, Chun T.;Lee, Frank Y.F.;So, Raymond C.H.;Wong, John P.S.;Mak, Gary Y.K.;Chien, Eric P.;McManus, Alison M.
    • Safety and Health at Work
    • /
    • v.6 no.3
    • /
    • pp.192-199
    • /
    • 2015
  • Background: Overweight, obesity, and cardiovascular disease risk factors are prevalent among firefighters in some developed countries. It is unclear whether physical activity and cardiopulmonary fitness reduce cardiovascular disease risk and the cardiovascular workload at work in firefighters. The present study investigated the relationship between leisure-time physical activity, cardiopulmonary fitness, cardiovascular disease risk factors, and cardiovascular workload at work in firefighters in Hong Kong. Methods: Male firefighters (n = 387) were randomly selected from serving firefighters in Hong Kong (n = 5,370) for the assessment of cardiovascular disease risk factors (obesity, hypertension, diabetes mellitus, dyslipidemia, smoking, known cardiovascular diseases). One-third (Target Group) were randomly selected for the assessment of off-duty leisure-time physical activity using the short version of the International Physical Activity Questionnaire. Maximal oxygen uptake was assessed, as well as cardiovascular workload using heart rate monitoring for each firefighter for four "normal" 24-hour working shifts and during real-situation simulated scenarios. Results: Overall, 33.9% of the firefighters had at least two cardiovascular disease risk factors. In the Target Group, firefighters who had higher leisure-time physical activity had a lower resting heart rate and a lower average working heart rate, and spent a smaller proportion of time working at a moderate-intensity cardiovascular workload. Firefighters who had moderate aerobic fitness and high leisure-time physical activity had a lower peak working heart rate during the mountain rescue scenario compared with firefighters who had low leisure-time physical activities. Conclusion: Leisure-time physical activity conferred significant benefits during job tasks of moderate cardiovascular workload in firefighters in Hong Kong.