• Title/Summary/Keyword: Oxygen transfer coefficient ($K_La$)

Search Result 23, Processing Time 0.026 seconds

Application of Scale-Up Criterion of Constant Oxygen Mass Transfer Coefficient ($k_La$) for Production of Itaconic Acid in a 50 L Pilot-Scale Fermentor by Fungal Cells of Aspergillus terreus

  • Shin, Woo-Shik;Lee, Dohoon;Kim, Sangyong;Jeong, Yong-Seob;Chun, Gie-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1445-1453
    • /
    • 2013
  • The scale-up criterion of constant oxygen mass transfer coefficient ($k_La$) was applied for the production of itaconic acid (IA) in a 50 L pilot-scale fermentor by the fungal cells of Aspergillus terreus. Various operating conditions were examined to collect as many $k_La$ data as possible by adjusting the stirring speed and aeration rate in both 5 L and 50 L fermentor systems. In the fermentations performed with the 5 L fermentor, the highest IA production was obtained under the operating conditions of 200 rpm and 1.5 vvm. Accordingly, we intended to find out parallel agitation and aeration rates in the 50 L fermentor system, under which the $k_La$ value measured was almost identical to that ($0.02sec^{-1}$) of the 5 L system. The conditions of 180 rpm and 0.5 vvm in the 50 L system turned out to be optimal for providing almost the same volumetric amount of dissolved oxygen (DO) into the fermentor, without causing shear damage to the producing cells due to excessive agitation. Practically identical fermentation physiologies were observed in both fermentations performed under those respective operating conditions, as demonstrated by nearly the same values of volumetric ($Q_p$) and specific ($q_p$) IA production rates, IA production yield ($Y_{p/s}$), and specific growth rate (${\mu}$). Specifically, the negligible difference of the specific growth rate (${\mu}$) between the two cultures (i.e., $0.029h^{-1}$ vs. $0.031h^{-1}$) was notable, considering the fact that ${\mu}$ normally has a significant influence on $q_p$ in the biosynthesis of secondary metabolites such as itaconic acid.

Enhance of Dissolved Oxygen Rate using a 3-prong Nozzle (3구 노즐을 이용한 산소의 용존율 향상)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.947-954
    • /
    • 2015
  • Dielectric barrier discharge plasma is a new technique in water pollutant degradation, which that is characterized by the production of chemically active species such as hydroxyl radicals, ozone, hydrogen peroxide, etc. If dissolving of plasma gas generated in the plasma reaction has increased, it is possible to increase the contaminant removal capacity. In this study, the improvement on the dissolving performance of plasma gas was evaluated by the indirect method measuring the overall oxygen transfer coefficient. Experiments were conducted to examine the effects of nozzle type, distance from water surface, air supply rate and liquid circulation rate. The experimental results showed that the $K_{La}$ value of the 3-prong nozzle is 2.67 times higher than the diffuser. The order of $K_{La}$ value with nozzle type ranked in the following order: 3-prong nozzle (inner diameter, less 1 mm) > circular nozzle (inner diameter, 1.5 mm) > ellipse nozzle (short diameter 1 mm, long diameter 2.5 mm) > circular nozzle (inner diameter, 3 mm). Optimal liquid circulation rate was appeared to be 1.7 L/min, the value of $K_{La}$ was 0.510 1/min. The value of $K_{La}$ with increasing air supply rate was revealed in the form of an exponential such as $K_{La}=0.3581e^{0.2919^*air\;flow\;rate}$.

Effects of Hydrocarbon Additions on Gas-liquid Mass Transfer Coefficients in Biphasic Bioreactors

  • Silva, Teresa Lopes da;Calado, Vitor;Silva, Nadia;Mendes, Rui L.;Alves, Sebastiao S.;Vasconcelos, Jorge M.T.;Reis, Alberto
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.245-250
    • /
    • 2006
  • The effects of aliphatic hydrocarbons (n-hexadecane and n-dodecane) on the volumetric oxygen mass transfer coefficient $(k_L\;a)$ were studied in flat alveolar airlift reactor and continuous stirred tank reactors (CSTRs). In the flat alveolar airlift reactor, high aeration rates (>2vvm) were required in order to obtain efficient organic-aqueous phase dispersion and reliable $k_La$ measurements. Addition of 1% (v/v) n-hexadecane or n-dodecane increased the $k_La$ 1.55- and 1.33-fold, respectively, compared to the control (superficial velocity: $25.8{\times}10^{-3}m/s$, sparger orifice diameter: 0.5 mm). Analysis of the gas-liquid interfacial area a and the liquid film mass transfer coefficient $k_L$ suggests that the observed $k_La$ increase was a function of the media's liquid film mass transfer. Addition of 1% (v/v) n-hexadecane or n-dodecane to analogous setups using CSTRs led to a $k_La$ increase by a factor of 1.68 and 1.36, respectively (superficial velocity: $2.1{\times}10^{-3}m/s$, stirring rate: 250 rpm). These results propose that low-concentration addition of oxygen-vectors to aerobic microbial cultures has additional benefit relative to incubation in purely aqueous media.

Study of different flexible aeration tube diffusers: Characterization and oxygen transfer performance

  • Hongprasith, Narapong;Dolkittikul, Natchanok;Apiboonsuwan, Kamolnapach;Pungrasmi, Wiboonluk;Painmanakul, Pisut
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.233-240
    • /
    • 2016
  • The research aims to study the different flexible rubber tube diffusers used in urban wastewater treatment processes and aquaculture systems. The experiment was conducted in small-scale aeration tank with different physical properties of the tubes that were used as aerators. The volumetric mass transfer coefficient ($k_La$), oxygen transfer efficiency (OTE) and aeration efficiency (AE) were measured and determined to compare the diffusers. Moreover, the bubble hydrodynamic parameters were analyzed in terms of bubble diameter ($d_B$) and rising velocity ($U_B$) by a high speed camera (2,000 frames/s). Then the interfacial area (a) and liquid-side mass transfer coefficient ($k_L$) can be calculated. The physical properties (tube wall thickness, tensile strength, orifice size, hardness and elongation) have been proven to be the key factor that controls the performance (kLa and OTE). The effects of hardness and elongation on bubble formation, orifice size and a-area were clearly proved. It is not necessary to generate too much fine bubbles to increase the a-area: this relates to high power consumption and the decrease of the kL. Finally, the wall thickness, elongation and hardness associated of the flexible tube diffuser (tube No. 12) were concluded, to be the suitable properties for practically producing, in this research.

Oxygen Transfer in Animal Cell Culture by Using a Silicone Tube as an Oxygenator (실리콘 튜브를 이용한 동물세포 배양장치의 산소전달)

  • 정흥채;김정회
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.445-450
    • /
    • 1992
  • An enhancement of the oxygen transfer rate in a 1$\ell$ bioreactor for mammalian cell culture by using a silicone rubber tubing as an oxygenator was investigated. When the silicone membrane was used to supply oxygen to the culture broth, the oxygen transfer coefficients ($k_{\iota}a$) measured in deionized-distilled water were markedly increased. Effect of surface aeration without the tubing aeration was very low under $1.0hr^{-1}$ of $k_{\iota}a$. The enhancing effects of agitation rates on $k_{\iota}a$ were much more effective than those of aeration rates. The increase of $k_{\iota}a$ with increasing tube length was observed as a result of the large surface area for oxygen supply. However, 2 m of the tube length was adequate for a 1$\ell$ vessel. The larger blade type of impeller was effective to enhance the kLa values because of its high mixing intensity. In culture medium supplemented with 5% serum, kLa values were reduced to approximately 40% probably due to the viscosity. We also obtained the normal cell concentration of $5{\times}10^6$ cells/m$\ell$ of HepG2 on microcarriers, which could be achieved in a typical bioreactor for animal cell culture.

  • PDF

Oxygen Transfer Rate from Liquid Free Surface in Reciprocally Shaking Vessel (왕복요동 교반조의 자유 표면에서의 산소흡수속도)

  • Koh, Seung-Tae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.276-280
    • /
    • 2021
  • The oxygen transfer rate at the liquid surface of the reciprocally shaking vessel was studied. The required power of the reciprocally shaking vessel was not proportional to the shaking frequency, unlike the rotational shaking vessel, and the liquid level suddenly fluctuated greatly at a certain frequency as the flow pattern in the vessel was a left and right wave flow different from that of the rotational shaking that has a rotational flow. The effect of the shaking frequency on the required power in the reciprocally shaking vessel was very complex, such as less power required than the rotational shaking vessel when the shaking frequency is more than 3 s-1, but the required power for the range of the generated rotational flow in the reciprocally shaking vessel could be correlated with the equation that was reported for the rotational shaking vessel. The kLa (mass transfer capacity coefficient) in the reciprocally shaking vessel also increased in a complex pattern because the required power for shaking was not consumed in a simple pattern, unlike kLa in the rotational shaking vessel, which increases linearly with increasing frequency. The kLa of the reciprocally shaking vessel was larger than the kLa of the rotational shaking vessel, and as the kLa value increased, the difference between them increased sharply. As a result, the oxygen transfer rate in the reciprocal motion was greater than that of the rotational motion, and could be correlated with the required power per unit volume.

Oxygen Transfer Rate Coefficient of Membrane Aeration Bioreactor for Vero Cell Culture

  • Jeon, Ju-Mi;Jeong, Yeon-Ho;Kim, Ik-Hwan;Lee, Sang-Jong;Jang, Yong-Geun;Jeon, Gye-Taek
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.269-270
    • /
    • 2002
  • Oxygen is a key substrate in animal cell metabolism and its consumption is thus a parameter of great interest for monitoring and control in animal cell culture bioreactor. The use of a gas-permeable membrane offered the possibility to provide the required quantity of oxygen into the culture. while avoiding problems of foaming or shear damage generally linked to sparging. For determining the optimum DO control strategy of this gas-permeable membrane aeration bioreactor, the oxygen transfer rate coefficient was measured with varying $N_2$ ratio in inlet air. The results showed that an increasing mass flow rate of nitrogen reduced the $K_La$ value. and 5% nitrogen in air did not result in any oxygen limitation.

  • PDF

Enhancement of Hyaluronic Acid Production by Batch Culture of Streptococcus zooepidemicus via the addition of n-Dodecane as an Oxygen Vector

  • Liu, Long;Yang, Haiquan;Zhang, Dongxu;Du, Guocheng;Chen, Jian;Wang, Miao;Sun, Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.596-603
    • /
    • 2009
  • This study aimed to examine the influence of adding an oxygen vector, n-dodecane, on hyaluronic acid (HA) production by batch culture of Streptococcus zooepidemicus. Owing to the high viscosity of culture broth, microbial HA production during 8-16 h was limited by the oxygen transfer coefficient $K_La$, which could be enhanced by adding n-dodecane. With the addition of n-dodecane to the culture medium to a final concentration of 5% (v/v), the average value of $K_La$ during 8-16 h was increased to $36{\pm}2h^{-1}$, which was 3.6 times that of the control without n-dodecane addition. With the increased $K_La$ and dissolved oxygen (DO) by adding 5% (v/v) of n-dodecane, a 30% increase of HA production was observed compared with the control. Furthermore, the comparison of the oxygen mass transfer in the absence and presence of n-dodecane was conducted with two proposed mathematical models. The use of n-dodecane as an oxygen vector, as described in this paper, provides an efficient alternative for the optimization of other aerobic biopolymer productions, where $K_La$ is usually a limiting factor.

Estimation of Kinetic Parameters for Biomass Growth Using Micro-nano Bubbles Reactor (마이크로-나노버블 반응조를 이용한 미생물성장 동력학 계수의 추정에 관한 연구)

  • Han, Young-Rip;Jung, Byung-Gil;Jung, Yoo-Jin;Cho, Do-Hyun;Sung, Nak-Chang
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.647-653
    • /
    • 2010
  • The objectives of this research are to evaluate and compare the oxygen transfer coefficients($K_{La}$) in both a general bubbles reactor and a micro-nano bubbles reactor for effective operation in sewage treatment plants, and to understand the effect on microbial kinetic parameters of biomass growth for optimal biological treatment in sewage treatment plants when the micro-nano bubbles reactor is applied. Oxygen transfer coefficients($K_{La}$) of tap water and effluent of primary clarifier were determined. The oxygen transfer coefficients of the tap water for the general bubbles reactor and micro-nano bubbles reactor were found to be 0.28 $hr^{-1}$ and 2.50 $hr^{-1}$, respectively. The oxygen transfer coefficients of the effluent of the primary clarifier for the general bubbles reactor and micro-nano bubbles reactor were found be to 0.15 $hr^{-1}$ and 0.91 $hr^{-1}$, respectively. In order to figure out kinetic parameters of biomass growth for the general bubbles reactor and micro-nano bubbles reactor, oxygen uptake rates(OURs) in the saturated effluent of the primary clarifier were measured with the general bubbles reactor and micro-nano bubbles reactor. The OURs of in the saturated effluent of the primary clarifier with the general bubbles reactor and micro-nano bubbles reactor were 0.0294 mg $O_2/L{\cdot}hr$ and 0.0465 mg $O_2/L{\cdot}hr$, respectively. The higher micro-nano bubbles reactor's oxygen transfer coefficient increases the OURs. In addition, the maximum readily biodegradable substrate utilization rates($K_{ms}$) for the general bubbles reactor and micro-nano bubbles reactor were 3.41 mg COD utilized/mg active VSS day and 7.07 mg COD utilized/mg active VSS day, respectively. The maximum specific biomass growth rates for heterotrophic biomass(${\mu}_{max}$) were calculated by both values of yield for heterotrophic biomass($Y_H$) and the maximum readily biodegradable substrate utilization rates($K_{ms}$). The values of ${\mu}_{max}$ for the general bubbles reactor and micro-nano bubbles reactor were 1.62 $day^{-1}$ and 3.36 $day^{-1}$, respectively. The reported results show that the micro-nano bubbles reactor increased air-liquid contact area. This method could remove dissolved organic matters and nutrients efficiently and effectively.

A Study on Kinetics of Oxygen in Small Size Pond using Oxygen Solubilization Device System (산소 용해수 발생 장치를 이용한 소형 연못의 산소 거동 연구)

  • Kim, Young-Taek;Bae, Yoon-Sun;Roh, Eun-Kyung;Park, Chul-Hwi
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.475-481
    • /
    • 2006
  • The major problem in closing water like lakes and ponds in Korea is that because they are exposed to surrounding, so easily polluted. The pollution in closing water can be caused by not only artificial factor like sewage but also natural factor like elution from sediment. For insurance of safe and satisfied water source, lots of studies and projects are now going on. In this study, we examined the behavior and effect of microbubble ($3{\sim}10{\mu}m$) produced by device called O.S.D (Oxygen Solubillization Device) in small size pond. The value of oxygen transfer coefficient ($K_La$) was 0.68/min independently of air flow rate, 6.5 times higher than commercial aeration stone and the variation of nitrogen concentration was $0.008NO_3/O_2$, DO concentration was potentially saturated for 24 hr. From the results of pilot plant, SOD of experiment (O.S.D) and control were $12.18gO_2{\cdot}m^{-2}{\cdot}d^{-1}$ and $47.95gO_2{\cdot}m^{-2}{\cdot}d^{-1}$ respectively. In conclusion, because O.S.D has extraordinary physico-chemical characteristics, it can contribute to improvement of both the waterbody and the sediment environment.