• Title/Summary/Keyword: Oxygen transfer coefficient

Search Result 84, Processing Time 0.031 seconds

Oxygen Transfer Characteristics of an Ejector Aeration System

  • Yang, Hei-Cheon;Park, Sang-Kyoo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.1
    • /
    • pp.10-17
    • /
    • 2012
  • The objective of this study was to investigate the oxygen transfer characteristics of an ejector aeration system. In order to evaluate the oxygen transfer performance of the ejector aeration system, a comparative experiment was conducted on a conventional blower aeration system. The effect of entrained air flow rate and aerating water temperature on the oxygen transfer efficiency was investigated. The dissolved oxygen concentration increased with increasing entrained air flow rate, but decreased with increasing aerating water temperature for two aeration systems. The volumetric mass transfer coefficient increased with increasing entrained air flow rate and with increasing aerating water temperature for both aeration systems. The average mass transfer coefficient for the ejector aeration system was about 20% and 42% higher than that of the blower aeration system within the experimental range of entrained air flow rates and aerating water temperatures.

Mixed Flow and Oxygen Transfer Characteristics of Vertical Orifice Ejector (수직 오리피스 이젝터의 혼합유동 및 산소전달 특성)

  • Kim, Dong Jun;Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.61-69
    • /
    • 2015
  • The objective of this study is to experimentally investigate the mixed flow behaviors and oxygen transfer characteristics of a vertical orifice ejector. The experimental apparatus consisted of an electric motor-pump, an orifice ejector, a circulation water tank, an air compressor, a high speed camera unit and control or measurement accessories. The mass ratio was calculated using the measured primary flow rate and suction air flow rate with experimental parameters. The visualization images of vertically injected mixed jet issuing from the orifice ejector were qualitatively analyzed. The volumetric oxygen transfer coefficient was calculated using the measured dissolved oxygen concentration. At a constant primary flow rate, the mass ratio and oxygen transfer coefficient increase with the air pressure of compressor. At a constant air pressure of the compressor, the mass ratio decreases and the oxygen transfer coefficient increases as the primary flow rate increases. The residence time and dispersion of fine air bubbles and the penetration of mixed flow were found to be important parameters for the oxygen transfer rate owing to the contact area and time of two phases.

Comparison of Overall Oxygen Transfer Coefficient in the Membrane Coupled High Performance Reactor for a High Organic Loading Wastewater Treatment (고부하 유기성 폐수처리를 위한 분리막 결합형 순산소 고효율 포기장치의 총괄 산소전달효율 평가)

  • Kang, Bum-Hee;Lim, Kyeong-Ho;Lee, Sang-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.81-88
    • /
    • 2010
  • This study was conducted to find the capability of comparison of overall oxygen transfer coefficient in the membrane coupled high performance reactor (MPHCR) in treating high organic loading wastewater. Effluent quality had been analyzed while the influent organic loading rate was changed from 2 to $7kg\;COD/m^3{\cdot}day$. The oxygen transfer coefficients had been investigated using two-phase nozzle for operating variables which were internal circulation flowrate (5~8 L/min), air flow rate (0.0125~0.2 L/min), liquid temperature ($10{\sim}20^{\circ}C$), and pure-oxygen flow rate (0.0125~0.2 L/min). The overall oxygen transfer coefficient was increased with flowrate of internal circulation and air and high temperature. Especially, internal circulation flow rate showed distinct effect on overall oxygen transfer coefficient due to an increase of gas holdup and air-liquid contract area by two-phase nozzle. In the high range of organic loading rate from 4 to $7kg\;COD/m^3{\cdot}day$, the removable efficiency of COD was 91%. Conventional activated sludge process usually treat organic loading from 0.32 to $0.64kg\;COD/m^3{\cdot}day$ however, the MPHCR can treat 10 to 20 times higher if it would be compared to the conventional activated sludge process. Foaming problem often happened and caused biomass wash out of the reactor, therefore, the foaming should be controlled for the enhanced operation.

THE KINETIC STUDIES OF GLUCONIC ACID FERMENTATION (PART 1) Effect of Phenol and Catechol Derivatives on Oxygen Transfer in the Fermentation (Gluconic acid의 발효에 관한 연구(제1보) 발효조중 산소이동에 미치는 Phenol 유도분 및 Catechol 유도분의 영향)

  • LEE Keun-Tai;LEE Kyung-Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.11 no.4
    • /
    • pp.205-211
    • /
    • 1978
  • The effect of phenol derivatives (guaiacol, vanillin, o-vanillin, eugenol) and catechol derivatives (pyrogallol, resoicinol) to enhance the volumetric oxygen transfer coefficient, in the aerobic fermentation was studies. Guaiacol, vanillin, o-vanillin, pyrogallol and resorcinol revealed to enchance the volumetric oxygen transfer coefficient, and eugenol had no such ability. The enhancement of the oxygen transfer ability is probably due to the formation of the charge transfer complex by the derivatives and oxygen molecules.

  • PDF

Oxygen Transfer Characteristics & Pure Oxygen Application Study on Circulation Flow Rate of the JLB (Jet Loop Bioreactor) (Jet 폭기 시스템의 순환유량에 따른 산소전달 특성 및 순산소 적용성 검토)

  • Park, Noh-Back;Song, Yong-Hyo;Pack, June-Gue;Jun, Hang-Bae
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.896-901
    • /
    • 2009
  • In this study, in order to apply the air and pure oxygen in the Jet Loop Reactor (JLB) in which the oxygen transfer rate is high, differentiate the operation mode according to each air flowrate and liquid flowrate and investigate the oxygen transfer characteristic, an experiment was carried out. The oxygen concentration with the air flowrate ($Q_g$) and liquid flowrate ($Q_L$) was identical but the oxygen transfer coefficient ($K_L{\cdot}a$) is linear depending on degree of two factors. The width of an increase is small in $0.1min^{-1}$ when the air flowrate is 0.2 L/min with increasing the liquid flowrate. Whereas, the increment was exposed to be very high for $1.5min^{-1}$ when the air flowrate was 5 L/min. In the experiments using the pure oxygen, it was 30 mg/L of oxygen concentration finally and it was 3.5 times than using the air. But the time reached the saturated concentration was similar to using the air, and $K_L{\cdot}a$ was similar to using the air too. Analysis between two independent variable and oxygen transfer of the correlation is the same model like $K_L{\cdot}a={0.0161Q_L}^{1.5371}{Q_g}^{0.5433}$ using with coefficient non linear regression analysis. It was resulted that the liquid flowrate were approximately three times than air flowrate on effect to oxygen transfer rate.

Mass Transfer Characteristics of Vertical Two-Phase Flows with Orifice Nozzle (오리피스 노즐 수직 2 상 유동의 물질전달 특성)

  • Kim, Dong Jun;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.817-824
    • /
    • 2015
  • Experiments were carried out to investigate the flow and mass transfer characteristics of an orifice nozzle. Measurements of primary and suction flow rates, dissolved oxygen concentration, and electric power were obtained. Vertically injected mixed-jet images were captured by a direct visualization technique with a high speed camera unit. The mass ratio, volumetric mass transfer coefficient, and mass transfer performance were calculated using the measured data. As the primary flow pressure increases, the mass ratio decreases slightly, while the volumetric mass transfer coefficient and electric power increase. As the primary flow pressure increases and the mass ratio decreases, the mass transfer rate increases because of the fine bubbles and wider distribution of the bubbles.

Effect of Salinity on Dissolved Oxygen Characteristics in an Ejector-Aerator (이젝터-폭기 시스템의 용존산소특성에 미치는 염도의 영향)

  • Yang, Hei-Cheon;Park, Sang-Kyoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.640-646
    • /
    • 2011
  • Dissolved oxygen (DO) refers to the volume of oxygen that is contained in water, and is a major indicator of water quality. The objective of this paper was to investigate the effect of salinity on the dissolved oxygen characteristics in an ejector-aerator. An experimental aeration system composed of a motor-pump, an ejector, a motor-blower, a set of aeration and recirculation tank and a control panel. The dissolved oxygen concentrations decreased with the water salinity. The volumetric mass transfer coefficient increased with increasing the water salinity.

The design of an ejector type microbubble generator for aeration tanks

  • Lim, Ji-Young;Kim, Hyun-Sik;Park, Soo-Young;Kim, Jin-Han
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.307-311
    • /
    • 2019
  • The ejector type microbubble generator, which is the method to supply air to water by using cavitation in the nozzle, does not require any air supplier so it is an effective and economical. Also, the distribution of the size of bubbles is diverse. Especially, the size of bubbles is smaller than the bubbles from a conventional air diffuser and bigger than the bubbles from a pressurized dissolution type microbubble generator so it could be applied to the aeration tank for wastewater treatment. However, the performance of the ejector type microbubble generator was affected by hydraulic pressure and MLSS(Mixed Liquor Suspended Solid) concentration so many factors should be considered to apply the generator to aeration tank. Therefore, this study was performed to verify effects of hydraulic pressure and MLSS concentration on oxygen transfer of the ejector type microbubble generator. In the tests, the quantity of sucked air in the nozzle, dissolved oxygen(DO) concentration, oxygen uptake rate(OUR), oxygen transfer coefficient were measured and calculated by using experimental results. In case of the MLSS, the experiments were performed in the condition of MLSS concentration of 0, 2,000, 4,000, 8,000 mg/L. The hydraulic pressure was considered up to $2.0mH_2O$. In the results of experiments, oxygen transfer coefficient was decreased with the increase of MLSS concentration and hydraulic pressure due to the increased viscosity and density of wastewater and decreased air flow rate. Also, by using statistical analysis, when the ejector type microbubble generator was used to supply air to wasterwater, the model equation of DO concentration was suggested to predict DO concentration in wastewater.

Oxygen Transfer Rate Coefficient of Membrane Aeration Bioreactor for Vero Cell Culture

  • Jeon, Ju-Mi;Jeong, Yeon-Ho;Kim, Ik-Hwan;Lee, Sang-Jong;Jang, Yong-Geun;Jeon, Gye-Taek
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.269-270
    • /
    • 2002
  • Oxygen is a key substrate in animal cell metabolism and its consumption is thus a parameter of great interest for monitoring and control in animal cell culture bioreactor. The use of a gas-permeable membrane offered the possibility to provide the required quantity of oxygen into the culture. while avoiding problems of foaming or shear damage generally linked to sparging. For determining the optimum DO control strategy of this gas-permeable membrane aeration bioreactor, the oxygen transfer rate coefficient was measured with varying $N_2$ ratio in inlet air. The results showed that an increasing mass flow rate of nitrogen reduced the $K_La$ value. and 5% nitrogen in air did not result in any oxygen limitation.

  • PDF