• Title/Summary/Keyword: Oxygen transfer capacity

Search Result 30, Processing Time 0.027 seconds

Selection of Oxygen Carrier Candidates for Chemical Looping Combustion by Measurement of Oxygen Transfer Capacity and Attrition Loss (산소전달량 및 마모손실 측정에 의한 매체순환연소용 산소전달입자 후보 선정)

  • KIM, HANA;PARK, JAEHYEON;BAEK, JEOM-IN;RYU, HO-JUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.404-411
    • /
    • 2016
  • To select appropriate oxygen carrier candidates for chemical looping combustion, reduction characteristics of seven oxygen carriers were measured and discussed using three different reduction gases, such as $H_2$, CO, and $CH_4$. Moreover, attrition losses of those oxygen carriers also measured and compared. Among seven oxygen carrier particles, OCN703-1100 and NiO/bentonite particles showed higher oxygen transfer capacity than other particles, but these particles showed more attrition loss than other particles. C14 and C28 particles which used as cheap oxygen carriers in European country showed lower oxygen transfer capacity and less attrition loss. Based on the experimental results, we could select OCN717-R1SU, NC001, and N002 particles as candidates for future works because these oxygen carriers showed enough oxygen transfer capacity and good attrition resistance.

CH4 Combustion Characteristics of Oxygen Carriers in a Bubbling Fluidized Bed (기포유동층에서 산소전달입자들의 메탄 연소특성)

  • RYU, HO-JUNG;PARK, YOUNGCHEOL;LEE, SEUNG-YONG;JO, SUNG-HO;SHUN, DOWON;BAEK, JEOM-IN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.581-588
    • /
    • 2016
  • To compare reduction reactivity of oxygen carrier particles, $CH_4$ combustion characteristics were measured and investigated in a bubbling fluidized bed reactor with increasing $CH_4$ concentration from 10 to 100 %. Among five oxygen carriers (OC-1, OC-2, SDN70, C14, C28), OC-1, OC-2, SDN70 particles were selected as better oxygen carriers from the viewpoints of fuel conversion and $CO_2$ selectivity. However, some oxygen carriers showed lower fuel conversion and $CO_2$ selectivity even though they have high oxygen transfer capacity. Therefore, we could conclude that not only TGA tests to measure the oxygen transfer capacity but also fluidized bed tests to analyze exhaust gas concentration should be performed to select better oxygen carrier without misunderstanding of carriers reactivity.

Reduction Characteristics of Oxygen Carrier Particles for Chemical-looping Combustor with Different Fuels (매체순환식 가스연소기용 산소공여입자들의 연료별 연소특성)

  • Ryu, Ho-Jung;Kim, Kyung-Su;Park, Yeong-Seong;Park, Moon-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.1
    • /
    • pp.45-54
    • /
    • 2009
  • Reduction reactivity and carbon deposition characteristics of three oxygen carrier particles(OCN01, OCN02, OCN03) have been investigated by using hydrogen, methane, syngas, and natural gas as fuels. For all particles, the maximum conversion, the oxygen transfer capacity, and the degree of carbon deposition increased as the reactive carbon contents increased. The reduction rate and the oxygen transfer rate increased as the moles of required oxygen per input gas increased. The change of maximum conversion, reduction rate, oxygen transfer capacity, oxygen transfer rate and degree of carbon deposition for different fuels can be explained consistently by using parameters such as the reactive carbon contents and the moles of require oxygen per input gas.

Reduction Characteristics of Mass Produced Particle for Chemical-Looping Combustor with Different Fuels (매체순환식 가스연소기용 대량생산입자의 연료별 환원반응특성)

  • Ryu, Ho-Jung;Kim, Kyung-Su;Lee, Seung-Yong;Park, Yeong-Seong;Park, Moon-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.348-358
    • /
    • 2008
  • Reduction reactivity and carbon deposition characteristics of mass produced oxygen carrier particle(OCN-650) have been investigated by using hydrogen, methane, syngas, and natural gas as fuels. For all fuels, the maximum conversion and oxygen transfer capacity increased as the temperature increase. The reduction rate and the oxygen transfer rate increased as the temperature increase for methane. However, those values showed maximum at 900$^{\circ}C$ for hydrogen, syngas, and natural gas. To explain consistently the change of maximum conversion, reduction rate, oxygen transfer capacity, oxygen transfer rate and degree of carbon deposition for different fuels, new parameters such as reactive carbon contents and require oxygen per input gas were adopted.

Effect of Ce0.9Gd0.1O1.95 as a promoter upon the oxygen transfer properties of MgMnO3-δ-Ce0.9Gd0.1O1.95 composite oxygen carrier materials for chemical looping combustion

  • Hwang, Jong Ha;Lee, Ki-Tae
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.18-23
    • /
    • 2019
  • Chemical looping combustion (CLC) is a promising carbon capture and storage (CCS) technology whose efficiency and cost primarily relies on the oxygen carrier materials used. In this paper, gadolinium-doped ceria (GDC, Ce0.9Gd0.1O1.95) was added as a promoter to improve the oxygen transfer rate of MgMnO3-δ oxygen carrier materials. Increasing GDC content significantly increased the oxygen transfer rate of MgMnO3-δ-GDC composites for the reduction reaction due to an increase in the surface adsorption of CH4 via oxygen vacancies formed on the surface of the GDC. On the other hand, the oxygen transfer rate for the oxidation reaction decreased linearly with increasing GDC content due to the oxygen storage ability of GDC. Adsorbed oxygen molecules preferentially insert themselves into oxygen vacancies of the GDC lattice rather than reacting with (Mg,Mn)O to form MgMnO3-δ during the oxidation reaction.

A Study on Redox Properties of CaSnO3 Oxygen Carrier for Chemical Looping Combustion Process (매체순환연소공정용 CaSnO3 산소전달입자의 산화·환원 특성 연구)

  • Son, Eun Nam;Baek, Seung Hun;Lee, Roosse;Sohn, Jung Min
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.43-48
    • /
    • 2019
  • This study investigated the feasibility of $CaSnO_3$ particles as an oxygen carrier in chemical looping combustion (CLC). $CaSnO_3$ particles had a perovskite crystal structure and showed the structural stability after repeated reduction-oxidation reactions. The oxygen transfer capacity was 15.4 wt% almost the same as the calculated theoretical value from the crystal structure transformation during reduction. After $10^{th}$ cycles of reduction and oxidation, the oxygen transfer capacity and rate were still maintained constantly at an operating temperature. In conclusion, $CaSnO_3$ particles could be a good alternative material as an oxygen carrier in CLC.

Development of promotors for fast redox reaction of MgMnO3 oxygen carrier material in chemical looping combustion

  • Hwang, Jong Ha;Lee, Ki-Tae
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.372-377
    • /
    • 2018
  • MgO or gadolinium-doped ceria (GDC, $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}$) was added as a promoter to improve the oxygen transfer kinetics of $MgMnO_3$ oxygen carrier material for chemical looping combustion. Neither MgO nor GDC reacted with $MgMnO_3$, even at the high temperature of $1100^{\circ}C$. The average oxygen transfer capacities of $MgMnO_3$, 5 wt% $MgO-MgMnO_3$, and 5 wt% $GDC-MgMnO_3$ were 8.74, 8.35, and 8.13 wt%, respectively. Although the addition of MgO or GDC decreased the oxygen transfer capacity, no further degradation was observed during their use in 5 redox cycles. The addition of GDC significantly improved the conversion rate for the reduction reaction of $MgMnO_3$ compared to the use of MgO due to an increase in the surface adsorption process of $CH_4$ via oxygen vacancies formed on the surface of GDC. On the other hand, the conversion rates for the oxidation reaction followed the order 5 wt% $GDC-MgMnO_3$ > 5 wt% $MgO-MgMnO_3$ >> $MgMnO_3$ due to morphological change. MgO or GDC particles suppressed the grain growth of the reduced $MgMnO_3$ (i.e., (Mg,Mn)O) and increased the specific surface area, thereby increasing the number of active reaction sites.

Performance Comparison of Spray-dried Mn-based Oxygen Carriers Prepared with γ-Al2O3, α-Al2O3, and MgAl2O4 as Raw Support Materials

  • Baek, Jeom-In;Kim, Ui-Sik;Jo, Hyungeun;Eom, Tae Hyoung;Lee, Joong Beom;Ryu, Ho-Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.285-291
    • /
    • 2016
  • In chemical-looping combustion, pure oxygen is transferred to fuel by solid particles called as oxygen carrier. Chemical-looping combustion process usually utilizes a circulating fluidized-bed process for fuel combustion and regeneration of the reduced oxygen carrier. The performance of an oxygen carrier varies with the active metal oxide and the raw support materials used. In this work, spraydried Mn-based oxygen carriers were prepared with different raw support materials and their physical properties and oxygen transfer performance were investigated to determine that the raw support materials used are suitable for spray-dried manganese oxide oxygen carrier. Oxygen carriers composed of 70 wt% $Mn_3O_4$ and 30 wt% support were produced using spray dryer. Two different types of $Al_2O_3$, ${\gamma}-Al_2O_3$ and ${\alpha}-Al_2O_3$, and $MgAl_2O_4$ were applied as starting raw support materials. The oxygen carrier prepared from ${\gamma}-Al_2O_3$ showed high mechanical strength stronger than commercial fluidization catalytic cracking catalyst at calcination temperatures below $1100^{\circ}C$, while the ones prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ required higher calcination temperatures. Oxygen transfer capacity of the oxygen carrier prepared from ${\gamma}-Al_2O_3$ was less than 3 wt%. In comparison, oxygen carriers prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ showed higher oxygen transfer capacity, around 3.4 and 4.4 wt%, respectively. Among the prepared Mn-based oxygen carriers, the one made from $MgAl_2O_4$ showed superior oxygen transfer performance in the chemical-looping combustion of $CH_4$, $H_2$, and CO. However, it required a high calcination temperature of $1400^{\circ}C$ to obtain strong mechnical strength. Therefore, further study to develop new support compositions is required to lower the calcination temperature without decline in the oxygen transfer performance.

The Effect of CBB(CaO·BaO·B2O3) Addition on the Physical Properties and Oxygen Transfer Reactivity of NiO-based Oxygen Carriers for Chemical Looping Combustion (CBB를 첨가한 NiO 산소전달입자의 물성 및 반응 특성)

  • BAEK, JEOM-IN;JO, HYUNGEUN;EOM, TAEHYOUNG;LEE, JOONGBEOM;RYU, HO-JUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.95-105
    • /
    • 2016
  • Spray-dried NiO-based oxygen carriers developed for chemical looping combustion required high calcination temperatures above $1300^{\circ}C$ to obtain high mechanical strength applicable to circulating fluidized-bed process. In this study, the effect of CBB ($CaO{\cdot}BaO{\cdot}B_2O_3$) addition, as a binder, on the physical properties and oxygen transfer reactivity of spray-dried NiO-based oxygen carriers was investigated. CBB addition resulted in several positive effects such as reduction of calcination temperature and increase in oxygen transfer capacity and porosity. However, oxygen transfer rate was considerably decreased. This was more apparent when a higher amount of CBB was added and MgO was added together. From the experimental results, it is concluded that CBB added NiO-based oxygen carriers are not suitable for chemical looping combustion and a new method to reduce calcination temperature while maintaining high oxygen transfer rate of NiO-based oxygen carriers should be found out.

Effect of $CO_2$ Concentration on Reduction Reactivity of Oxygen Carriers for Chemical-looping Combustor (매체순환식 가스연소기용 산소공여입자들의 환원반응성에 미치는 $CO_2$ 농도의 영향)

  • Ryu, Ho-Jung;Lee, Seung-Yong;Kim, Hong-Ki;Park, Moon-Lee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.3
    • /
    • pp.245-255
    • /
    • 2009
  • Effect of CO$_2$ concentration on reduction reactivity of oxygen carrier particles for chemical-looping combustor were investigated. Four particles, NiO/bentonite, OCN601-650, OCN702-1100, OCN702-1250, were used as oxygen carrier particles and two kinds of gases (CH$_4$, 5%, N$_2$ balance and CH$_4$ 5%, CO$_2$ balance) were used as reactants for reduction. For all oxygen carrier particles, higher maximum conversion, reduction rate, oxygen transfer capacity, and oxygen transfer rate were achieved when we used N$_2$ balance gas. OCN601-650 particle showed higher oxygen transfer rate for all gases than other particles, and therefore we selected OCN601-650 particle as the best candidate. For all particles, lower carbon depositions were observed when we used CO$_2$ balance gas.