• 제목/요약/키워드: Oxygen resistance

검색결과 746건 처리시간 0.036초

플라즈마 산질화처리 조건이 강의 내식성에 미치는 영향 (The Characteristics of Corrosion Resistance during Plasma Oxinitrocarburising for Carbon Steel)

  • 이구현;남기석;이상로;조효석;신평우;박율민
    • 열처리공학회지
    • /
    • 제14권2호
    • /
    • pp.103-109
    • /
    • 2001
  • Plasma nitrocarburising and post oxidation were performed on SM45C steel using a plasma nitriding unit. Nitrocarburising was carried out with various methane gas compositions with 4 torr gas pressure at $570^{\circ}C$ for 3 hours and post oxidation was carried out with 100% oxygen gas atmosphere with 4 torr at different temperatures for various times. It was found that the compound layer produced by plasma nitrocarburising consisted of predominantly ${\varepsilon}-Fe_{2-3}(N,C)$ and a small proportion of ${\gamma}-Fe_4(N,C)$. With increasing methane content in the gas mixture, ${\varepsilon}$ phase compound layer was favoured. In addition, when the methane content was further increased, cementite was observed in the compound layer. The very thin oxide layer on top of the compound layer was obtained by post oxidation. The formation of Oxide phase was initially started from the magnetite($Fe_3O_4$) and with increasing oxidation time, the oxide phase was increased. With increasing oxidation temperature, oxide phase was increased. However the oxide layer was split from the compound layer at high temperature. Corrosion resistance was slightly influenced by oxidation times and temperatures.

  • PDF

플라즈마 후처리 시간에 따른 저유전율 SiOF 박막의 특성 (Characteristics of Low Dielectric Constant SiOF Thin Films with Post Plasma Treatment Time)

  • 이석형;박종완
    • 한국진공학회지
    • /
    • 제7권3호
    • /
    • pp.167-272
    • /
    • 1998
  • ECR plasma CVD를 이용한 SiOF박막은 낮은 유전상수를 가지고 있으며, 기존의 공정과의 정합성이 우수해 다층배선 공정에 채용이 유망한 재료이지만 수분의 흡수로 인한 유전율의 상승과 후속공정의 안정성이 문제점으로 부각되고 있다. 따라서 본 연구에서는 SiOF박막의 내흡습성과 후속공정에서의 안정성을 향상시키기 위하여 SiOF박막을 증착한 후 후속 산소 플라즈마 처리를 행하였다. SiOF박막은 산소 플라즈마 처리를 수행함으로써 SiOF박막의 밀도가 증가하고, 수분과의 친화력이 강한 Si-F 결합이 감소하는 것이 주요한 원인으로 사료된다. 하지만 플라즈마 처리 시간이 5분 이상으로 증가하면 유전율의 증가가 일어난다. 따라서 본 실험에서는 산소 플라즈마 처리조건이 마이크로파 전력이 700W, 공정 압력이 3mTorr, 기판온도가 $300^{\circ}C$일 경우 플라즈마 처리시간은 3분이 적당한 것으로 생각 된다.

  • PDF

Electrical Properties of Metal-Oxide Quantum dot Hybrid Resistance Memory after 0.2-MeV-electron Beam Irradiation

  • Lee, Dong Uk;Kim, Dongwook;Kim, Eun Kyu;Pak, Hyung Dal;Lee, Byung Cheol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.311-311
    • /
    • 2013
  • The resistance switching memory devices have several advantages to take breakthrough for the limitation of operation speed, retention, and device scale. Especially, the metal-oxide materials such as ZnO are able to fabricate on the flexible and visible transparent plastic substrate. Also, the quantum dots (QDs) embedded in dielectric layer could be improve the ratio between the low and the high resistance becauseof their Coulomb blockade, carrier trap and induced filament path formation. In this study, we irradiated 0.2-MeV-electron beam on the ZnO/QDs/ZnO structure to control the defect and oxygen vacancy of ZnO layer. The metal-oxide QDs embedded in ZnO layer on Pt/glass substrate were fabricated for a memory device and evaluated electrical properties after 0.2-MeV-electron beam irradiations. To formation bottom electrode, the Pt layer (200 nm) was deposited on the glass substrate by direct current sputter. The ZnO layer (100 nm) was deposited by ultra-high vacuum radio frequency sputter at base pressure $1{\times}10^{-10}$ Torr. And then, the metal-oxide QDs on the ZnO layer were created by thermal annealing. Finally, the ZnO layer (100 nm) also was deposited by ultra-high vacuum sputter. Before the formation top electrode, 0.2 MeV liner accelerated electron beams with flux of $1{\times}10^{13}$ and $10^{14}$ electrons/$cm^2$ were irradiated. We will discuss the electrical properties and the physical relationships among the irradiation condition, the dislocation density and mechanism of resistive switching in the hybrid memory device.

  • PDF

새로운 대기압 플라즈마 소스를 이용한 결정질 실리콘 태양전지 인산 도핑 가능성에 관한 연구 (A Study on Feasibility of the Phosphoric Acid Doping for Solar Cell Using Newly Atmospheric Pressure Plasma Source)

  • 조이현;윤명수;조태훈;권기청
    • 조명전기설비학회논문지
    • /
    • 제27권6호
    • /
    • pp.95-99
    • /
    • 2013
  • Furnace is currently the most important doping process using POCl3 in solar cell. However furnace need an expensive equipment cost and it has to purge a poisonous gas. Moreover, furnace typically difficult appling for selective emitters. In this study, we developed a new atmospheric pressure plasma source, in this procedure, we research the atmospheric pressure plasma doping that dopant is phosphoric acid($H_3PO_4$). Metal tube injected Ar gas was inputted 5 kV of a low frequency(scores of kHz) induced inverter, so plasma discharged at metal tube. We used the P type silicon wafer of solar cell. We regulated phosphoric acid($H_3PO_4$) concentration on 10% and plasma treatment time is 90 s, 150 s, we experiment that plasma current is 70 mA. We check the doping depth that 287 nm at 90 s and 621 nm at 150 s. We analysis and measurement the doping profile by using SIMS(Secondary Ion Mass Spectroscopy). We calculate and grasp the sheet resistance using conventional sheet resistance formula, so there are 240 Ohm/sq at 90 s and 212 Ohm/sq at 150 s. We analysis oxygen and nitrogen profile of concentration compared with furnace to check the doped defect of atmosphere.

동정맥루의 복합성 혈류학 소견이 그 관리에 미치는 영향 (Impact of Complex Hemodynamics to the Management of ArterioVenous(AV) Fistula)

  • 이병붕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.9-10
    • /
    • 2002
  • Human circulatory system between heart and tissue is not directly connected in normal condition but mandatory to go through the capillary system in order to fulfill its physiologic aim to deliver oxygen and nutrients, etc. to the tissue and retrieve used blood together with waste products from the tissue properly. When abnormal connection between arterial and venous system (AV fistula), these two circulatory systems respond differently to the hemodynamic impact of this abnormal connection between high pressure (artery) and low pressure (vein) system. Depending upon the location and/or degree (e.g. size and flow) of fistulous condition, each circulatory system exerts different compensatory hemodynamic response to this newly developed abnormal inter-relationship between two systems in order to minimize its hemodynamic impact to own system of different hemodynamic characteristics. Pump action of the heart can assist the failing arterial system directly to maintain arterial circulation against newly established low peripheral resistance by the AV fistula during the compensation period, while it affects venous system in negative way with increased venous loading. However, the negative impact of increased heart action to the venous system is partly compensated by the lymphatic system which is the third circulatory system to assist venous system independently with different hemodynamics. The lymphatic system with own unique Iymphodynamics based on peristaltic circulation from low resistance to high resistance condition, also increases its circulation to assist the compensation of overloaded venous system. Once these compensation mechanisms should fail to fight to newly established hemodynamic condition due to this abnormal AV connection, each system start to show different physiologic ${\underline{de}compensation}$ including heart and lymphatic system. The vicious cycle of decompensation between arterial and vein, two circulatory system affecting each other by mutually negative way steadily progresses to show series of hemodynamic change throughout entire circulation system altogether including heart. Clinical outcome of AV fistula from the compensated status to decompensated status is closely affected by various biological and mechanical factors to make the hemodynmic status more complicated. Proper understanding of these crucial biomechanical factors iii particular on hemodyanmic point of view is mandatory for the advanced assessment of biomechanical impact of AV fistula, since this new advanced concept of AY fistula based on blomechanical information will be able to improve clinical control of the complicated AV fistula, either congenital or acquired.

  • PDF

도전재 종류 및 함량에 따른 아연공기전지의 cathode특성연구 (Effect of the Conducting Agent on Characteristics of Cathode for Zn/Air Batteries)

  • 김지훈;엄승욱;문성인;윤문수;김주용;육경창;박정후
    • 전기화학회지
    • /
    • 제5권2호
    • /
    • pp.74-78
    • /
    • 2002
  • 아연공기전지는 공기중의 산소를 사용하므로 cathode의 재활용이 가능하다는 장점이 있으며 아연의 이론용량이 820(mAh/g)으로 상당히 높다. 그러나, 아연공기전지는 cathodf치 기공이 너무 작으면 외부로부터 유입되는 산소량이 부족하여 전지의 방전전압이 낮아지는 결과를 초래하게 되며 cathode에 포함되어 있는 도전재의 함량에 따라 저항 및 기공율에 많은 변화를 보이고 있다. 이에 본 연구에서는 전지의 용량, 출력특성, 방전전압, DC저항, ASTM에 의한 기공율 측정을 통해 도전재의 종류 및 함량이 아연공기전지에 미치는 영향을 연구하였으며, Super P의 도전재를 $5wt\%$ 첨가하였을 때 가장 우수한 전지특성을 얻을 수 있었다.

Surface Analysis of Fluorine-Plasma Etched Y-Si-Al-O-N Oxynitride Glasses

  • Lee, Jung-Ki;Hwang, Seong-Jin;Lee, Sung-Min;Kim, Hyung-Sun
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.38.1-38.1
    • /
    • 2009
  • Plasma etching is an essential process for electronic device industries and the particulate contamination during plasma etching has been interested as a big issue for the yield of productivity. The oxynitride glasses have a merit to prevent particulate contamination due to their amorphous structure and plasma etching resistance. The YSiAlON oxynitride glasses with increasing nitrogen content were manufactured. Each oxynitride glasses were fluorine-plasma etched and their plasma etching rate and surface roughness were compared with reference materials such as sapphire, alumina and quartz. The reinforcement mechanism of plasma etching resistance of the YSiAlON glasses studied by depth profiling at plasma etched surface using electron spectroscopy for chemical analysis. The plasma etching rate decreased with nitrogen content and there was no selective etching at the plasma etched surface of the oxynitride glasses. The concentration of silicon was very low due to the generation of SiF4 very volatile byproduct and the concentration of aluminum and yttrium was relatively constant. The elimination of silicon atoms during plasma etching was reduced with increasing nitrogen content because the content of the nitrogen was constant. And besides, the concentration of oxygen was very low on the plasma etched surface. From the study, the plasma etching resistance of the glasses may be improved by the generation of nitrogen related structural groups and those are proved by chemical composition analysis at plasma etched surface of the YSiAlON oxynitride glasses.

  • PDF

자동차 엔진부품용 Shaft에 플라즈마 산질화기술 적용 (The Application of Plasma Nitrocarburizing and Plasma Post Oxidation Technology to the Automobile Engine Parts Shafts)

  • 전은갑;박익민;이인섭
    • 한국재료학회지
    • /
    • 제16권11호
    • /
    • pp.681-686
    • /
    • 2006
  • Plasma nitrocarburising and plasma post oxidation were performed to improve the wear and corrosion resistance of S45C and SCM440 steel by a plasma ion nitriding system. Plasma nitrocarburizing was conducted for 3h at $570^{\circ}C$ in the nitrogen, hydrogen and methane atmosphere to produce the ${\varepsilon}-Fe_{2-3}$(N, C) phase. Plasma post oxidation was performed on the nitrocarburized samples with various oxygen/hydrogen ratio at constant temperature of $500^{\circ}C$ for 1 hour. The very thin magnetite ($Fe_3O_4$) layer $1-2{\mu}m$ in thickness on top of the $15{\sim}25{\mu}m$ ${\varepsilon}-Fe_{2-3}$(N, C) compound layer was obtained by plasma post oxidation. A salt spray test and electrochemical testing revealed that in the tested 5% NaCl solution, the corrosion characteristics of the nitrocarburized compound layer could be further improved by the application of the superficial magnetite layer. Throttle valve shafts were treated under optimum plasma processing conditions. Accelerated life time test results, using throttle body assembled with shaft treated by plasma nitrocarburising and post oxidation, showed that plasma nitrocarburizing and plasma post oxidation processes could be a viable technology in the very near future which can replace $Cr^{6+}$ plating.

Hydrogen Peroxide Prompted Lignification Affects Pathogenicity of Hemi-biotrophic Pathogen Bipolaris sorokiniana to Wheat

  • Poudel, Ajit;Navathe, Sudhir;Chand, Ramesh;Mishra, Vinod K.;Singh, Pawan K.;Joshi, Arun K.
    • The Plant Pathology Journal
    • /
    • 제35권4호
    • /
    • pp.287-300
    • /
    • 2019
  • Spot blotch caused by Bipolaris sorokiniana has spread to more than 9 million ha of wheat in the warm, humid areas of the Eastern Gangetic Plains (EGP) of South Asia and is a disease of major concern in other similar wheat growing regions worldwide. Differential lignin content in resistant and susceptible genotypes and its association with free radicals such as hydrogen peroxide ($H_2O_2$), superoxide ($O_2{^-}$) and hydroxyl radical ($OH^-$) were studied after inoculation under field conditions for two consecutive years. $H_2O_2$ significantly influenced lignin content in flag leaves, whereas there was a negative correlation among lignin and $H_2O_2$ to the Area Under Disease Progress Curve (AUDPC). The production of $H_2O_2$ was higher in the resistant genotypes than susceptible ones. The $O_2{^-}$ and $OH^-$ positively correlated with AUDPC but negatively with lignin content. This study illustrates that $H_2O_2$ has a vital role in prompting lignification and thereby resistance to spot blotch in wheat. We used cluster analysis to separate the resistant and susceptible genotypes by phenotypic and biochemical traits. $H_2O_2$ associated lignin production significantly reduced the number of appressoria and penetration pegs. We visualized the effect of lignin in disease resistance using differential histochemical staining of tissue from resistant and susceptible genotypes, which shows the variable accumulation of hydrogen peroxide and lignin around penetration sites.

Changes in Liver Enzymes and Metabolic Profile in Adolescents with Fatty Liver following Exercise Interventions

  • Iraji, Hamdollah;Minasian, Vazgen;Kelishadi, Roya
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제24권1호
    • /
    • pp.54-64
    • /
    • 2021
  • Purpose: Nonalcoholic fatty liver disease (NAFLD) is the most frequent cause of chronic liver diseases in both adults and children with obesity. The aim of this study was to compare the changes in liver enzymes and metabolic profile in adolescents with fatty liver following selected school-based exercise (SBE) and high-intensity interval training (HIIT) interventions. Methods: In a semi-experimental study, 34 obese male adolescents with clinically defined NAFLD were divided into the HIIT (n=11, age=12.81±1.02 years, body mass index [BMI]=26.68±2.32 kg/㎡), selected SBE (n=11, age=13.39±0.95 years, BMI=26.47±1.74 kg/㎡), and control (n=12, age=13.14±1.49 years, BMI=26.45±2.21 kg/㎡) groups. The ultrasonography NAFLD grade, peak oxygen uptake (VO2peak), lipid profile, insulin resistance, and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels of the participants were measured before and after the exercise interventions. Results: The BMI, waist-to-hip ratio, and body fat percentage of the participants decreased, and a significant increase in VO2peak was observed after the intervention; however, the HIIT group showed a significant improvement compared with the SBE group (p<0.01). Significant reductions were observed in the levels of insulin resistance, triglyceride, total cholesterol, ALT, and AST in both groups, although high-density lipoprotein levels decreased only in the HIIT group (p<0.01). Further, a significant reduction in low-density lipoprotein level was observed in the training groups (p<0.01), but this decrease was not significant compared with the control group (p>0.01). Conclusion: HIIT and SBE are equally effective in improving health parameters in obese children and adolescents.