• Title/Summary/Keyword: Oxygen resistance

Search Result 741, Processing Time 0.032 seconds

Size Effects of the Catalyst on Characteristics of Zn/Air Batteries (MnO2입자 크기에 따른 아연공기전지의 특성연구)

  • 김지훈;엄승욱;문성인;윤문수;김주용;박정식;박정후
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1150-1154
    • /
    • 2003
  • The voltage profile during discharge of the zinc air battery has very flat pattern until reach to end of discharge voltage. But, when zinc air battery is discharged by high current, the discharge voltage and energy becomes low. Therefore, we focused on effects of catalyst size to solve this problems by increasing active sites of oxygen reduction reaction. The size of catalyst was reduced from 27 to l${\mu}{\textrm}{m}$ and we examined average discharge voltage, capacity, energy, resistance and characteristics during GSM pulse discharge of zinc air battery with change of current density. And we also measured porosity of the cathode according to the ASTM. So we have got improvement of average discharge voltage and energy when catalyst was minimized and we have got optimum size of catalyst at 5${\mu}{\textrm}{m}$.

A Study on the Improvement of Microcrack Resistance of Carbon/Epoxy Composites at Cryogenic Temperature (극저온에서 탄소 섬유/에폭시 복합재료의 군열 저항성 향상에 관한 연구)

  • Hong, Joong-Sik;Kim, Myung-Gon;Kim, Chun-Gon;Kong, Cheol-Won
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.49-52
    • /
    • 2005
  • In the development of a propellant tank using liquid oxygen and liquid hydrogen, the improvement of microcrack resistance of carbon/epoxy composites is necessary for the application of a composite material to tank structures. In this research, two types of carbon/epoxy composites with different matrix systems were tested to measure interlaminar shear strength (ILSS), one of the material properties to evaluate fiber-matrix interface adhesion indirectly. Short beam specimens were tested inside an environmental chamber at room temperature(RT) and at cryogenic temperature( - 150 $^{\circ}C$) respectively. Results showed that the matrix system with large amount of bisphenol-A and CTBN modified rubber had good performance at cryogenic temperature.

  • PDF

Synthesis and Characterization of LSCF/CGO Composite Used as SOFC Cathode Materials (SOFC 용 LSCF/CGO 공기극의 제조 및 특성연구)

  • Park, Jae-Layng;Lim, Tak-Hyoung;Lee, Seung-Bok;Park, Seok-Joo;Shin, Dong-Ryul;Song, Rak-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.184-186
    • /
    • 2009
  • Composites of LSCF($La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ and CGO(gadolinium doped ceria) is an efficient candidate cathode material with CGO electrolytes. In this study, LSCF with exact perovskite structure was synthesized by using solid state reaction(SSR) method. The optimized temperature to synthesize $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ with rhombohedral structure. was $1100^{\circ}C$. The polarization resistance of the LSCF/CGO(50:50 wt.%) was smaller than those of other composite cathodes. The analysis of the EIS data of LSCF/CGO suggests that the diffusion and adsorption-desorption of oxygen can be the key process in the cathodic reaction of SOFC using LSCF/CGO as cathode material.

  • PDF

Properties of indium tin oxide thin films annealed in vacuum (진공에서 열처리된 ITO 박막의 특성)

  • 이임연;이기암
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.3
    • /
    • pp.152-157
    • /
    • 2000
  • Post-deposition vacuum annealing effects in electron-bearn-evaporated indium tin oxide (ITO) films have been investigated by the change of transmittance, sheet resistance and crystalline structure with annealing temperature ( $200-335^{\circ}C$) and oxygen partial pressure ($1\times^10^{-5}-1$\times10^{-4} torr$) in air and vacuum. The sarnples were polycrystalline films with a preferred orientation in the (222) plan. High quality films with sheet resistance as low as 62 Q/O and transmittance over 99% (absentee layer at 500 nm) have been obtained by suitably controlling the vacuum annealing pararneters.neters.

  • PDF

The Aqueous Corrosion Characteristics of Catenary Materials of Electric Railway System (전차선로 가선재의 수용액 부식 특성)

  • 김용기;장세기;조성일;이재봉
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.2
    • /
    • pp.62-70
    • /
    • 2001
  • Pure copper, Cu-1.1wt%Cd and ACSR(Aluminum Conductor Steel Reinforced) have been used as catenary materials of the electric railway system. Since these materials may be exposed to the corrosive environments like polluted air, acid rain and sea water, it is important to investigate the corrosion rates in various corrosive environments. The aqueous corrosion characteristics of catenary materials in aerated acid, neutral and alkali solutions were studied by using immersion corrosion tests, electrochemical measurements and analytical techniques. In order to examine corrosion characteristics according to the dissolved oxygen content, pH, chloride ion concentration ion, and the addition of Cd to Cu, a series of tests such as potentiodynamic polarization, a.c impedance spectroscopy and galvanic corrosion tests were carried out with these materials. Results showed that the addition of Cd to Cu and chloride ion in the solution have an adverse effects on the resistance to corrosion. Additionally, Galvanic currents between Al and steel wires of ACSR were confirmed by using ZRA(zero resistance ammeter) method.

  • PDF

Wear behaviors of diamond thin films deposited on WC-Co substrate (초경합금 기판 위에 성장된 다이아몬드 박막의 내마모 특성)

  • 김대일;이상희;윤종현;김병수;이철화;이덕출;박종관;박상현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.398-401
    • /
    • 1999
  • We prepared diamond thin films on WC-Co substrate in a mixtured $H_2-CH_4-O_2$, gas, using 13.%MHz RF PACVD. Scanning electron microscopy, X-ray diffraction and Rarnan spectroscopy were used to analyze the characteristics of thin film, and tribometer of ball-on-disk type were used to test the wear resistance between thin film and substrate. The good diamond quality and wear resistance was appeared with cemented tungsten carbide substrate treated with oxygen plasma.

  • PDF

Insulation Properties and Microstructure of SiO$_2$ Film Prepared by rf Magnetron Sputtering (고주파 마그네트론 스퍼터링으로 제조한 SiO$_2$ 절연박막의 구조분석 및 절연저항에 관한 연구)

  • 박태순;이성래
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.2
    • /
    • pp.113-121
    • /
    • 2002
  • We have investigated insulating properties of $SiO_2$ interlayer for the thin film strain gauge, which were prepared by RF magnetron sputtering method in various deposition conditions, such as Ar pressure, gas flow rates and sputtering gases. SEM, AFM and FT-IR techniques were used to analyze its structures and composition. As the Ar pressure and the flow rate increased, the insulating interlayer showed low insulating resistance due to its porous structure and defects. Oxygen deficiency in $SiO_2$ was decreased as fabricated by hydrogen reactive sputtering. We could enhance the surface mobility of sputtered adatoms by using Ar/$H_2$ sputtering gas and obtain a good surface roughness and insulating property. The optimum insulating resistance of 9.22 G$\Omega$ was obtained in Ar/30% $H_2$ mixed gas, flow rate 10sccm, and 1mTorr.

Effect of Fe on the High Temperature Oxidation of TiAl Alloys (TiAl 합금의 고온 산화에 미치는 Fe의 영향)

  • 김미현;이동복
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.4
    • /
    • pp.281-288
    • /
    • 2000
  • To understand the effect of Fe on the oxidation behavior of TiAl alloys, TiAl-(2, 4, 6at% )Fe were oxidized at 800 and 90$0^{\circ}C$ in air. The oxidation resistance of TiAl-Fe alloys increased with increasing an iron content. The scales formed consisted of an outer $TiO_2$ layer, an intermediate $A1_2$$O_3$ layer, and an inner mixed ($TiO_2$+$A1_2$$O_3$) layer, being similar to other common TiAl alloys. But, the scales formed on TiAl-Fe alloys were generally thin compared to those formed on pure TiAl, and contained dissolved iron. Below the oxide scale, an oxygen affected zone was formed. This beneficial effects of Fe on increasing the oxidation resistance and scale adherence of TiAl alloys were attributed to the refinement of oxide grains, increased scale adherence and the enhanced alumina-forming tendency.

  • PDF

Characterization of AZO Thin Film by Plasma Surface Treatment (플라즈마 표면 처리에 따른 AZO 박막의 특성 변화)

  • Woo, Jong-Chang;Kim, Gwan-Ha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.147-150
    • /
    • 2019
  • There is a need for the development of transparent conductive materials that are economical and environmentally friendly with exhibit low resistivity and high transmittance in the visible spectrum. In this study, the deposition rate and uniformity of Al-doped ZnO-thin films were improved by changing the Z-motion of the sputtering system. The deposition rate and the uniformity were determined to be 3.44 nm/min and 1.23%, respectively, under the 10 mm Z-motion condition. During $O_2$ plasma treatment, the intrusion-type metal elements in the thin film were reduced, which contributed to an oxygen vacancy reduction in addition to structural stabilization. Moreover, the sheet resistance was more easily saturated.

Effect of Phosphate Surface Treatment on the Localized Corrosion Resistance of UNS G41400 Steel (UNS G41400 강의 인산염 표면 처리에 따른 국부 부식 저항성)

  • Jun-Seob Lee;Siwook Park
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.429-434
    • /
    • 2023
  • This study investigated the localized corrosion behavior of a UNS G41400 steel surface treated with manganese phosphate. The phosphate coating, primarily composed of oxygen (O), phosphorus (P), and manganese (Mn) elements, had an approximate thickness of 6 ㎛. The particles comprising the coating varied in size by several micrometers; smaller particles were mainly composed of O, P, Mn, and iron (Fe) elements, indicating incomplete formation of the manganese phosphate film. Potentiodynamic polarization curves revealed a decrease in anodic current after surface treatment and a shift in corrosion potential toward the noble direction after treatment. After immersion in a 3.5 wt% NaCl solution for 96 hours, localized corrosion was observed, with some regions retaining residual phosphate film. Even though localized corrosion occurred on the treated surface, it was less severe than that on the untreated UNS G41400 steel surface. These findings suggest that manganese phosphate coating improved resistance to localized corrosion.