• Title/Summary/Keyword: Oxygen permeability

Search Result 259, Processing Time 0.022 seconds

Analysis of Physical and Antibacterial Properties of Functional Silicone Hydrogel Ophthalmic Lenses Containing Graphene Groups

  • Su-Mi Shin;Hye-In Park;A-Young Sung
    • Korean Journal of Materials Research
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • The physical and antibacterial properties of ophthalmic lenses fabricated by copolymerization with hydrogel monomers using two types of graphene were measured, and their usability as contact lens materials was analyzed. For polymerization, silicone monomers, including SID-OH, 3-(methacryloxy)propyl tris(trimethylsiloxy)silane, and decamethylcyclopentasiloxane, were used, and N,N-dimethylacetamide, ethylene glycol dimethacrylate as a crosslinking agent, and azobisisobutyronitrile as an initiator were added. Also, graphene oxide nanoparticle (GON) and graphene nanoplate (GNP) were used as an additive, and the physical properties of the lenses fabricated after copolymerization were evaluated. The fabricated lenses satisfied the basic physical properties of general hydrogel contact lenses and showed the characteristics of lenses with high water content, and the disadvantage of very weak durability, due to low tensile strength. However, it was confirmed that the tensile strength and antibacterial properties were greatly improved by adding GON and GNP. With GON, the oxygen permeability and refractive index of the fabricated lenses were slightly improved. Therefore, it was determined that the graphene materials used in this study can be used in various ways as a contact lens material.

Gas Separation through Conductive Polymer Membranes. I. - Effect of Dopants on Properties and Gas Separation of Polyanilines - (전도성고분자의 기체투과특성 I. -도판트에 따른 물성 및 기체투과특성의 변화-)

  • 이연근;하성룡;이영무;홍성연
    • Membrane Journal
    • /
    • v.6 no.4
    • /
    • pp.258-264
    • /
    • 1996
  • Polyanilines were prepared by the oxidative polymerization in the presence of ammonium persulfate as an oxidant. After dehydration, a doping was carried out by mixing the polymer solution with dopants and immersing into aqueous dopant solutions. Using various riopants, the d-spacing of polyanilines can be controlled from $3.72{\AA}$ to $4.844{\AA}$. The d-spacing of polyanilines with polymeric or bulky dopants was larger than that of as-cast polyaniline. The characterization of the physical properties were confirmed by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), dielectric analyzer (DEA) etc. Annealed polyaniline membrane exhibited the oxygen permeability of 0.072 barrer and the oxygen selectivity to nitrogen was 6.87. For the gas separation of polyanilines with polymeric or bulky riopants, the permeability increased while the selectivity detereased. Permeability can be readily controlled by the use of bulky dopants.

  • PDF

Antitumor Effects of Camptothecin Combined with Conventional Anticancer Drugs on the Cervical and Uterine Squamous Cell Carcinoma Cell Line SiHa

  • Ha, Sang-Won;Kim, Yun-Jeong;Kim, Won-Yong;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2009
  • Functional defects in mitochondria are involved in the induction of cell death in cancer cells. We assessed the toxic effect of camptothecin against the human cervical and uterine tumor cell line SiHa with respect to the mitochondria-mediated cell death process, and examined the combined effect of camptothecin and anticancer drugs. Camptothecin caused apoptosis in SiHa cells by inducing mitochondrial membrane permeability changes that lead to the loss of mitochondrial membrane potential, decreased Bcl-2 levels, cytochrome c release, caspase-3 activation, formation of reactive oxygen species and depletion of GSH. Combination of camptothecin with other anticancer drugs (carboplatin, paclitaxel, doxorubicin and mitomycin c) or signaling inhibitors (farnesyltransferase inhibitor and ERK inhibitor) did not enhance the camptothecin-induced cell death and caspase-3 activation. These results suggest that camptothecin may cause cell death in SiHa cells by inducing changes in mitochondrial membrane permeability, which leads to cytochrome c release and activation of caspase-3. This effect is also associated with increased formation of reactive oxygen species and depletion of GSH. Combination with other anticancer drugs (or signaling inhibitors) does not appear to increase the anti-tumor effect of camptothecin against SiHa cells, but rather may reduce it. Combination of camptothecin with other anticancer drugs does not seem to provide a benefit in the treatment of cervical and uterine cancer compared with camptothecin monotherapy.

FT-IR Studies of Molybdena Supported on Titania

  • Kim, Kwan;Lee,, Soon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.1
    • /
    • pp.17-22
    • /
    • 1991
  • Fourier transform infrared spectroscopy has been applied to the characterization of titania supported molybdena. The equilibrium adsorption method seemed to produce molybdena species homogeneously dispersed on the support. Even under an oxidizing environment, molybdena species appeared to be able to possess coordinatively unsaturated $Mo^{5+}$ ions owing to the natures of TiO$_2$, i.e. oxygen deficiency and permeability toward oxygen diffusion. At the initial stage of reduction, the terminal double bond oxygen ( Mo=O ) seemed to be removed, generating presumably $Mo^{4+}$. The carbonyl bands at 2198 and 2190 $cm^{-1}$ observed after CO exposure were attributed to the $Mo^{5+}{\cdots}CO\;and\;Mo^{4+}\;{\cdots}CO$ complexes, respectively, while the band pair at 2136 and 2076 $cm^{-1}$ to $Mo^{4+}(CO)_2$.

Oxygen Permeation and Syngas Production of La0.7Sr0.3Ga0.6Fe0.4O Oxygen Permeable Membrane (La0.7Sr0.3Ga0.6Fe0.4O 분리막의 산소투과특성 및 합성가스의 생성)

  • 이시우;이승영;이기성;정경원;김도경;우상국
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.594-600
    • /
    • 2003
  • L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ perovskite-type mixed conducting membranes, which could permeate oxygen selectively, have been fabricated and the microstructural features developed by varying the sintering conditions have been analyzed. The effects of surface modification and the membrane thickness on oxygen permeability have been evaluated under He/air environment. With increasing a grain boundary fraction, the overall oxygen permeability decreased. The syngas (CO+ $H_2$) has been produced by partial oxidation reaction of methane with the oxygen permeated through the membrane. Methane conversion and syngas yield have been evaluated as functions of the compositional ratio of feed gas and reaction temperature. In long-term duration test for 600 h, under C $H_4$+He/air environment, L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ membrane showed a highly stable performance.

Monitoring bridge scour using dissolved oxygen probes

  • Azhari, Faezeh;Scheel, Peter J.;Loh, Kenneth J.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.2
    • /
    • pp.145-164
    • /
    • 2015
  • Bridge scour is the predominant cause of overwater bridge failures in North America and around the world. Several sensing systems have been developed over the years to detect the extent of scour so that preventative actions can be performed in a timely manner. These sensing systems have drawbacks, such as signal inaccuracy and discontinuity, installation difficulty, and high cost. Therefore, attempts to develop more efficient monitoring schemes continue. In this study, the viability of using optical dissolved oxygen (DO) probes for monitoring scour depths was explored. DO levels are very low in streambed sediments, as compared to the standard level of oxygen in flowing water. Therefore, scour depths can be determined by installing sensors to monitor DO levels at various depths along the buried length of a bridge pier or abutment. The measured DO is negligible when a sensor is buried but would increase significantly once scour occurs and exposes the sensor to flowing water. A set of experiments was conducted in which four dissolved oxygen probes were embedded at different soil depths in the vicinity of a mock bridge pier inside a laboratory flume simulating scour conditions. The results confirmed that DO levels jumped drastically when sensors became exposed during scour hole evolution, thereby providing discrete measurements of the maximum scour depth. Moreover, the DO probes could detect any subsequent refilling of the scour hole through the deposition of sediments. The effect of soil permeability on the sensing response time was also investigated.

Gas Impermeability Enhancement of EFDM/Crosslinked IIR Blends (Crosslinked IIR의 블렌드비에 따른 EPDM의 내기체투과특성 향상)

  • Kim, Hyun-Jun;Jung, Il-Hyun;Hong, In-Kwon;Park, Jae-Woo
    • Elastomers and Composites
    • /
    • v.33 no.3
    • /
    • pp.193-200
    • /
    • 1998
  • It is well known that EPDM(ethylene propylene diene monomer) rubber has inherently excellent resistance to the weathering, ozone, heat, cold and moisture, whereas crosslinked IIR (isobutylene isoprene divlnyl benzene terpolymer) shows proper resistance to the water and gas permeation. Various characteristics of EPDM blend with crosslinked IIR such as curing characteristics, mechanical properties, dispersion of minor component and gas impermeability were explored. The optimum curing time $(t_{90})$ examined with peroxide was decreased by adding small amount of crosslinked IIR to the EPDM rubber. Mechanical properties of blends such as tensile strength, hardness and elongation at break were enhanced by increasing EPDM content. These results might be explained with the affinity of carbon black to the EPDM rubber. On the other hand, the physical properties were not changed significantly after aging, and the increase of crosslinked IIR fraction caused the decrease of compression set to small rate. EPDM rubber shows different behavior with crosslinked IIR in oxygen permeability. By adding 30wt.% crosslinked IIR to the EPDM rubber, the resistance to the oxygen permeation was improved up to three times than that of pure EPDM rubber. Conclusively, EPDM blend containing 30wt.% crosslinked IIR might be commercially applied to the o-ring and electric parts because of its proper resistance to the weathering, ozone and oxygen permeability.

  • PDF

Performance Comparison of Pressure Sensitive Paint and Pressure Field Measurement of Oblique Impinging Jet (Pressure Sensitive Paint의 성능비교 및 경사충돌분류의 압력장 측정)

  • Lee, Sang-Ik;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.1031-1038
    • /
    • 2002
  • The pressure sensitive paint (PSP) has recently received a considerable attention in the fields of aerodynamics and fluid mechanics as a new revolutionary optical technique to measure pressure fields on a body surface. In this study, the feasibility and effectiveness of the PSP pressure field measurement technique have been investigated experimentally. Seven different PSP formulations including two porphyrins(PtOEP and PtTFPP) and four polymers(Polystyrene, cellulous acetate butyrate, GP-197 and Silicon-708) were tested to check the performance and characteristics of each combination. The static calibration of each PSP formulation was carried out in a constant-pressure chamber. The PSP technique was applied to an oblique impinging jet flow to measure variation of pressure field on the impinging plate at on oblique jet angle of ${\theta}=60^{\circ}$. Pressure field images were captured by an 12bit intensified CCD(ICCD, $1K{\times}1K$)camera. As a result, the dynamic response of PSP depends on the oxygen permeability of polymer and the photochemical interaction between luminophore and polymer as well as the reaction of luminophore itself. The reaction of luminophore was changed by employing different polymers. In conclusion, Among 7 PSP formulation tested, the combination of PtTFPP and cellulous acetate butyrate show the best performance. In addition, the detail pressure field of an oblique high-speed impinging jet was measured effectively using the PSP technique.

Promoting Effect of Hydrogen Peroxide on 1-Methyl-4-phenylpyridinium-induced Mitochondrial Dysfunction and Cell Death in PC12 Cells

  • Lee, Dong-Hee;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • The promoting effect of hydrogen peroxide ($H_2O_2$) against the cytotoxicity of 1-methyl-4-phenylpyridinium ($MPP^+$) in differentiated PC12 cells was assessed by measuring the effect on the mitochondrial membrane permeability. Treatment of PC12 cells with $MPP^+$ resulted in the nuclear damage, decrease in the mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c, activation of caspase-3, increase in the formation of reactive oxygen species (ROS) and depletion of GSH. Addition of $H_2O_2$ enhanced the $MPP^+-induced$ nuclear damage and cell death. Catalase, Carboxy-PTIO, Mn-TBAP, N-acetylcysteine, cyclosporin A and trifluoperazine inhibited the cytotoxic effect of $MPP^+$ in the presence of $H_2O_2$. Addition of $H_2O_2$ promoted the change in the mitochondrial membrane permeability, ROS formation and decrease in GSH contents due to $MPP^+$ in PC12 cells. The results show that the $H_2O_2$ treatment promotes the cytotoxicity of $MPP^+$ against PC12 cells. $H_2O_2$ may enhance the $MPP^+$-induced viability loss in PC12 cells by promoting the mitochondrial membrane permeability change, release of cytochrome c and subsequent activation of caspase-3, which is associated with the increased formation of ROS and depletion of GSH. The findings suggest that $H_2O_2$ as a promoting agent for the formation of mitochondrial permeability transition may enhance the neuronal cell injury caused by neurotoxins.

Facilitated Transport Separation of Carbon Dioxide Using Aminated Polyetherimide Membranes (아민화된 폴리이서이미드 막을 이용한 이산화탄소의 촉진수송분리)

  • Kwon, Se Hwan;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.248-255
    • /
    • 2015
  • Aminated polyetherimide membrane synthesized in the laboratory according to amine ratio was used for measurement of gas permeability, diffusivity, and solubility about carbon dioxide, nitrogen, methane, oxygen, and sulfur dioxide with Time-lag method at room temperature. Generally, gas permeability is totally decreased because the more amination rate reacted to the main chain of amine groups, the more intermolecular space became narrow. However, gas permeability of sulfur dioxide was increased due to combination of sulfur dioxide and amine groups have acid and base properties respectively. Diffusivity and solubility of dry gas are totally decreased excluding sulfur dioxide as increasing amination rate. In case of sulfur dioxide, however, diffusivity as well as solubility was increased as increasing amination rate. Selectivity of carbon dioxide/nitrogen showed 60 when amination rate was 3. In case of humid gas, gas permeability of carbon dioxide was 70 barrer when relative humidity showed 100, and selectivity with nitrogen approximately showed 18.