• Title/Summary/Keyword: Oxygen membrane

Search Result 879, Processing Time 0.029 seconds

Pollutant Removal in Variable HRT Using the Aerobic Biofilm (호기성 생물막을 이용한 HRT 변화에 따른 오염물질 제거)

  • Ahn, Kwang-Ho;Ko, Kwang-Baik;Kim, I-Tae;Kim, Kwang-Soo
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1495-1501
    • /
    • 2012
  • In this study, an experiment was conducted on influent water with low concentrations of organic matter, such as river water or secondary treatment water of a sewage treatment plant, according to HRT changes by using aerobic biofilm. In the biofilm process, as the biofilm increases in thickness, the inner membrane can be low in oxygen transfer rate and become anaerobic conditions, while the detachment of biomass from biofilm occurs. To overcome these limitations in the detachment of microorganisms in biofilm, the yarn, which was made from poly propylene(PP), was weaved and manufactured into a tube. Then, a test was carried out by injecting air so that the interior of the biofilm could create aerobic conditions. The results of the experiment showed that the removal efficiency of $TCOD_{cr}$ reached 66.1~81.2% by HRT 2hr, and 50.9 ~61.8% after HRT 1 hr. The removal efficiency of $SCOD_{cr}$ was 45.9 to 55.1% by HRT 1hr, and 26.1% in HRT 0.5hr, showing the highest removal efficiency in HRT 1hr. The SS removal efficiency was at 81.8 to 94.6%, and the effluent SS concentration was very low, indicating less than 2.2 mg/L in all HRT's. As a result, the $SCOD_{cr}$ and $NH_4{^+}$-N that were removed per specific surface area and attached to microbial biofilm showed the highest efficiency in HRT 1hr with 8.37 $gSCOD_{cr}/m^2{\cdot}d$, 2.93 $gNH_4{^+}-N/m^2{\cdot}d$. From the result of reviewing the characteristics of biofilm growth, microorganisms were found to be attached, and increased by 36 days. Later, they decreased in number through detachment, but showed a tendency to increase again 41 days later due to microbial reproduction.

Effects of 3D Flow-Channel Configurations on the Performance of PEMFC using Computational Fluid Dynamics (전산유체역학을 이용한 PEMFC의 성능에 대한 3차원 유로 구조의 영향)

  • Han, Kyoung-Ho;Yoon, Do Young
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.847-853
    • /
    • 2016
  • Here has been examined a 3-dimensional computational fluid dynamics (CFD) modeling in order to investigate the performance analysis of proton exchange membrane (PEM) fuel cells with serpentine flow fields. The present CFD model considers the isothermal transport phenomena in a fuel cell involving mass, momentum transport, electrode kinetics, and potential fields. Co-current flow patterns for a PEMFC are considered for various geometries in the single straight cell. Current density distribution from the calculated distribution of oxygen and hydrogen mass fractions has been determined, where the activation overpotential has been also calculated within anode and cathode. CFD results showed that profiles differ from those simulations subjected to each the calculated activation overpotential. It is interesting that the present serpentine flow field shows the specific distribution of current density with respect to the aspect ratio of depth to width and the ratio of reaction area for various serpentine geometries. Simulation results were considered reasonable with the other CFD results reported in literature and global comparisons of the PEMFC model.

Design and Implementation of 150W Portable Fuel Cell Power Pack (150W급 휴대용 연료전지 Power Pack 설계 및 제작)

  • Woo, Dong-Gyun;Joo, Dong-Myoung;Kim, Yun-Sung;Oh, Jae-Gi;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.553-561
    • /
    • 2012
  • Existing energy sources convert chemical energy into mechanical energy, while fuel cell directly generates electricity through an electrochemical reaction between hydrogen and oxygen. Therefore, it has a lot of strong points such as high efficiency, zero emission, and etc. In addition, with the development of hydrogen preservation technique, some companies have been researching and releasing portable fuel cell power packs for specific applications like military equipment, automobile, and so on. However, there are some drawbacks to the fuel cell, high cost and slow dynamic response. In order to compensate these weak points, auxiliary energy storages could be applied to the fuel cell system. In this paper, the optimum structure for a 150W portable fuel cell power pack with a battery pack is selected considering the specification of the system, and the design process of main parts is described in detail. Here, main objectives are compact size, simple control, high efficiency, and low cost. Then, an automatic mode change algorithm, which converts the operating mode depending on the states of fuel cell stack, battery pack, and load, is introduced. Finally, performance of the designed prototype using the automatic mode change control is verified through experiments.

Preferential CO Oxidation over Ce-Promoted Pt/γ-Al2O3 Catalyst (Ce가 첨가된 Pt/γ-Al2O3 촉매의 선택적 CO 산화반응 특성)

  • Kim, Kihyeok;Koo, Keeyoung;Jung, Unho;Yoon, Wanglai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.640-646
    • /
    • 2012
  • The effect of Ce promotion over 1wt% $Pt/{\gamma}-Al_2O_3$ catalysts on the CO conversion and $CO_2$ selectivity was investigated in preferential CO oxidation (PrOx) to reduce the CO concentration less than 10 ppm in excess $H_2$ stream for polymer electrolyte membrane fuel cell (PEMFC). Ce-promoted 1wt% $Pt/{\gamma}-Al_2O_3$ catalysts were prepared by incipient wetness impregnation method and the loading amount of Pt was fixed at 1wt%. The content of Ce promoter which has excellent oxygen storage and transfer capability due to the redox property was adjusted from 0 to 1.5wt%. Ce-promoted 1wt% $Pt/{\gamma}-Al_2O_3$ catalysts exhibit high CO conversion and $CO_2$ selectivity at low temperatures below $150^{\circ}C$ due to the improvement of reducibility of surface PtOx species compared with the 1wt% $Pt/{\gamma}-Al_2O_3$ catalyst without Ce addition. When Ce content was more than 1wt%, the catalytic activity was decreased at over $160^{\circ}C$ in PrOx because of competitive $H_2$ oxidation. As a result, 0.5wt% Ce is optimal content not only to achieve high catalytic activity and good stability at low temperatures below $150^{\circ}C$ in the presence of $CO_2$ and $H_2O$ but also to minimize the $H_2$ oxidation at high temperatures.

Antioxidant and Cytoprotective Effects of Lotus (Nelumbo nucifera) Leaves Phenolic Fraction

  • Lee, Da-Bin;Kim, Do-Hyung;Je, Jae-Young
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.1
    • /
    • pp.22-28
    • /
    • 2015
  • Phenolic rich ethyl acetate fraction (EAF) from lotus leaves was prepared and its bioactive components, antioxidant and cytoprotective effects were investigated. EAF showed high total phenolic content and flavonoid content and contained rutin ($11,331.3{\pm}4.5mg/100g\;EAF$), catechin ($10,853.8{\pm}5.8mg/100g\;EAF$), sinapic acid ($1,961.3{\pm}5.6mg/100g\;EAF$), chlorogenic acid ($631.9{\pm}2.3mg/100g\;EAF$), syringic acid ($512.3{\pm}2.5mg/100g\;EAF$), and quercetin ($415.0{\pm}2.1mg/100g\;EAF$). EAF exerted the $IC_{50}$ of $4.46{\mu}g/mL$ and $5.35{\mu}g/mL$ toward DPPH and ABTS cation radicals, respectively, and showed strong reducing power, which was better than that of ascorbic acid, a positive control. Additionally, EAF protected hydroxyl radical-induced DNA damage indicated by the conversion of supercoiled pBR322 plasmid DNA to the open circular form and inhibited lipid peroxidation of polyunsaturated fatty acid in a linoleic acid emulsion. In cultured hepatocytes, EAF exerted a cytoprotective effect against oxidative stress by inhibiting intracellular reactive oxygen species formation and membrane lipid peroxidation. In addition, depletion of glutathione under oxidative stress was remarkably restored by treatment with EAF. The results suggest that EAF have great potential to be used against oxidative stress-induced health conditions.

Germination and Biochemical Changes in Accelerated Aged and Osmoprimed Pinus thunbergii Seeds

  • Kim, Du-Hyun;Han, Sim-Hee;Lee, Jae-Cheon
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.2
    • /
    • pp.244-250
    • /
    • 2010
  • The aim of this study was to investigate relationship among seed viability and enzymes activities involved in scavenging reactive oxygen species (ROS), especially, superoxide dismutase (SOD), glutathione reductase (GR), and catalase (CAT). In other respects, osmopriming has been demonstrated to reinvigorate aged seeds. Various viabilities of seeds that were ranged from 80 to 100% of germination rate could be produced using osmopriming and accelerated aging treatments. Priming treatment of Pinus thunbergii seeds for 3 days at $15^{\circ}C$ with a polyethylene glycol solution at -1.2 MPa improved their subsequent germination at $25^{\circ}C$. Accelerated aging (3, 6, 9, and 12 days at $41^{\circ}C$ and 100% relative humidity) decreased seed germination percentage depending on aging treatment duration. Electrolyte conductivities of seeds were measured as assay of membrane integrity. The conductivity from electrolyte leakage of P. thunbergii seed was also correlated with seed germinability. Conductivity for control seeds that had 95% of germination percentage was 3.48 ${\mu}S\;g^{-1}$, but jumped as doubled (7.98 ${\mu}S\;g^{-1}$) in 12-day-aged seed that had 80% of germination percentage. Our results demonstrate that aging of P. thunbergii seeds is associated with changes in the electrolyte leakage, lipid peroxidation, and antioxidant defense system. Priming of aged seeds progressively restored the initial germinative ability and resulted in a marked decrease in the levels of MDA and conductivity of seed leachate. These effects of priming were also well recovered of GR and CAT activities in aged seed. The improved seed quality by priming treatment appears at least partly attributable to reduced lipid peroxidation, resulting from enhanced antioxidative enzyme activities that are suggesting the antioxidant defense systems play a key role in seed vigor.

Evaluation of phlorofucofuroeckol-A isolated from Ecklonia cava (Phaeophyta) on anti-lipid peroxidation in vitro and in vivo

  • Lee, Ji-Hyeok;Ko, Ju-Young;Oh, Jae-Young;Kim, Eun-A;Kim, Chul-Young;Jeon, You-Jin
    • ALGAE
    • /
    • v.30 no.4
    • /
    • pp.313-323
    • /
    • 2015
  • Lipid peroxidation means the oxidative degradation of lipids. The process from the cell membrane lipids in an organism is generated by free radicals, and result in cell damage. Phlorotannins, well-known marine brown algal polyphenols, have been utilized in functional food supplements as well as in medicine supplements to serve a variety of purposes. In this study, we assessed the potential anti-lipid peroxidation activity of phlorofucofuroeckol-A (PFF-A), one of the phlorotannins, isolated from Ecklonia cava by centrifugal partition chromatography in 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH)-stimulated Vero cells and zebrafish system. PFF-A showed the strongest scavenging activity against alkyl radicals of all other reactive oxygen species (ROS) and exhibited a strong protective effect against ROS and a significantly strong inhibited of malondialdehyde in AAPH-stimulated Vero cells. The apoptotic bodies and pro-apoptotic proteins Bax and caspase-3, which were induced by AAPH, were strongly inhibited by PFF-A in a dose-dependent manner and expression of Bcl-xL, an anti-apoptotic protein, was induced. In the AAPH-stimulated zebrafish model, additionally PFF-A significantly inhibited ROS and cell death, as well as exhibited a strong protective effect against lipid peroxidation. Therefore, these results suggest that PFF-A has excellent protective effects against ROS and lipid peroxidation induced by AAPH in both an in vitro Vero cell model and an in vivo zebrafish model.

Protective Effects of Chongmyunggongjin-dan on H2O2-induced C6 Glial Cell Death (H2O2로 유발된 C6 신경교세포 사멸에 대한 총명공진단의 보호 효과)

  • Hwang, Gyu-sang;Shin, Yong-jeen
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.1
    • /
    • pp.44-58
    • /
    • 2020
  • Objectives: This study was conducted to identify the protective effects of Chongmyunggongjin-dan (CMGJD) on Hydrogen peroxide (H2O2)-induced apoptosis mechanisms in C6 glial cells. Method: We used CMGJD after distilled water extraction, filtration, and lyophilization. The ROS scavenging effect was examined by fluorescence microscopy. Expression levels of proteins related to ROS generation were investigated by western blotting. Functional changes in organelles related to Reactive oxygen species (ROS) generation were investigated by immunoblotting and by verifying expression level of relevant enzymes. Results: The CMGJD extract protected the cells against H2O2-induced morphological changes and DNA fragmentation, inhibited the increase of Heme_oxygenase-1(HO-1) and the decrease in catalase, protected against the loss of mitochondrial membrane potential, inhibited disturbances of lysosomal function, and induced an increase in peroxisomes. Conclusion: CMGJD was confirmed to have a protective effect on H2O2-induced C6 glial cell death possibly by blocking the pathways causing damage to subcellular organelles, such as mitochondria, lysosomes, and peroxisomes. We assume that CMGJD will be effective for the prevention and treatment of ischemic stroke in a clinical environment.

Effects of Vespae Nidus on Peroxynitrite Production and Protein Expression of Proinflammatory Mediators (노봉방(露蜂房)이 t-butylhydroxyperoxide에 의한 Peroxynitrite 생성과 염증성 단백질 발현에 미치는 영향)

  • Jang, Jae-Shik;Jeong, Ji-Cheon;Shin, Hyeon-Cheol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1499-1505
    • /
    • 2007
  • Peroxynitrite ($ONOO^-$) is a reactive oxidant formed from superoxide anion radical (${\cdot}\;O_2-$) and nitric oxide (NO), which can oxidize cellular components such as essential protein, non-protein thiols, DNA, low-density lipoproteins and membrane phospholipids. ${\cdot}\;O_2-$ and $ONOO^-$ have contributed to the pathogenesis of diseases such as stroke, heart disease, Alzheimer's disease and atherosclerosis. Because of damaging effects of ${\cdot}\;O_2-$ and $ONOO^-$ oxidants, Vespae Nidus, which has been known to strengthen the kidneys to preserve the vital energy. was tested as a potential specific scavenger of those oxidants. In this study, the viability of Vespae Nidus (1, 10, 50 g/ml) to scavenge ${\cdot}\;O_2-$, NO, $ONOO^-$ and so to protect cells against tert-butylhydroxyperoxide (t-BHP) induced cell death was tested. The levels of ${\cdot}\;O_2-$ and $ONOO^-$ were detected by staining with DCFH-DA and DHR 123, respectively. Protein expression levels of COX-2, iNOS and $NF{-\kappa}B$ were assayed by western blot. Vespae Nidus blocked t-BHP-induced cell death in a dose-dependent fashion. Vespae Nidus inhibited t-BHP-induced production of ${\cdot}\;O_2-$, NO and $ONOO^-$ in YPEN cells. The lipid peroxide level was increased and glutathione level was decreased in lipopolysaccharide (LPS)-treated ICR mouse, whereas the ones in the Vespae Nidus-administered group were regulated beneficially. Vespae Nidus inhibited the expression of COX-2, iNOS and NF-κB (p65 and p50) genes in LPS-treated ICR mouse. The present study suggests that Vespae Nidus is a powerful antioxidant and promotes cellular defense activity by scavenging the toxic oxidants such as ${\cdot}\;O_2-$ and $ONOO^-$.

Chitosan Based Silver Nanocomposites (CAgNCs) Display Antibacterial Effects against Vibrio ichthyoenteri

  • Beom, Seo Seung;Shin, Sang Yeop;Dananjaya, S.H.S.;De Silva, A.B.K.H.;Nikapitiya, Chamilani;Cho, Jongki;Park, Gun-Hoo;Oh, Chulhong;Kang, Do-Hyung;De Zoysa, Mahanama
    • Journal of Veterinary Clinics
    • /
    • v.34 no.4
    • /
    • pp.261-267
    • /
    • 2017
  • The aim of this study was to investigate the antibacterial properties of chitosan silver nanocomposites (CAgNCs) using pathogenic Vibrio ichthyoenteri as a bacterial model. Results of agar disc diffusion and turbidimetric assays showed that CAgNCs could inhibit the growth of V. ichthyoenteri in concentration dependent manner. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CAgNCs were 75 and $125{\mu}g/mL$, respectively. Furthermore, CAgNCs treatment induced the reactive oxygen species (ROS) level in V. ichthyoenteri cells in concentration and time dependent manner, suggesting that it generates oxidative stress, leading to bacterial cell death. The field emission scanning electron microscope (FE-SEM) images of CAgNCs treated V. ichthyoenteri exhibited strong cell membrane damage than un-treated control bacteria. MTT assay results showed the highest cell viability (22%) at $75{\mu}g/mL$ of CAgNCs treated bacteria samples. The results from this study suggest that CAgNCs is a potential antibacterial agent to control fish pathogenic bacteria.