• Title/Summary/Keyword: Oxygen membrane

Search Result 877, Processing Time 0.03 seconds

Neuroprotective Activity of Boesenbergia rotunda Against Glutamate Induced Oxidative Stress in HT22 Cells (글루타메이트에 의해 산화적 스트레스를 받은 HT22 세포에서 핑거루트의 신경세포 보호활성)

  • Kim, Eun Seo;Ma, Choong Je
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.2
    • /
    • pp.79-86
    • /
    • 2022
  • Excessive glutamate causes oxidative stress in neuronal cells, which can cause degenerative neurological disorders. We tried to find medicinal plant showed neuroprotective activity by using glutamate-injured HT22 cell as a model system. In this study, we found that Boesenbergia rotunda methanol extract showed neuroprotective activity against glutamate induced neurotoxicity in mouse hippocampal HT22 cells. B. rotunda methanol extract suppressed the formation of reactive oxygen species and decreased intracellular Ca2+concentration. Also, B. rotunda made mitochondrial membrane potential maintain to normal levels. In addition, B. rotunda increased total glutathione amount and activated antioxidative enzyme such as glutathione reductase and glutathione peroxidase compared to glutamate-treated groups. These results suggested that B. rotunda decreased neuronal cell death damaged by high concentrations of glutamate treatment, via antioxidative mechanism and might be one of candidate of development of new drug to treat neurodegenerative disease such as Alzheimer's disease.

Selective removal of cationic dye pollutants using coal ash-derived zeolite/zinc adsorbents

  • Chatchai Rodwihok;Mayulee Suwannakaew;Sang Woo Han;Siyu Chen;Duangmanee Wongratanaphisan;Han S. Kim
    • Membrane and Water Treatment
    • /
    • v.14 no.3
    • /
    • pp.121-128
    • /
    • 2023
  • This study introduces a NaOH/Zn-assisted hydrothermal method for the synthesis of zeolites derived from coal ash (CA). A zeolite/Zn adsorbent is successfully prepared by the activation of CA with NaOH and Zn; it is characterized by a high surface area and a negative surface charge.Methylene blue (MB) and methyl orange (MO) are selected as dye pollutants, and their adsorption onto the zeolite/Zn adsorbent is investigated. Results show the high adsorption capacities of MB and MO and that the negative surface charge facilitates electrostatic interactions between the adsorbates and adsorbents. The zeolite/Zn adsorbents shows the selective adsorption of positively charged dye MB via electrostatic interactions between the =NH+ group (positive dipole) and the oxygen functional group of the adsorbents (negative dipole). The selectivity for the positively charged dye is sufficiently high, with the removal efficiency reaching 99.41% within 10 min. By contrast, the negatively charged dye MO exhibits negligible absorption. These findings confirm the role of electrostatic interactions in the adsorption of MB, in addition to the effect of a large surface area. The results of this study are expected to facilitate the development of simple, eco-friendly, and cost-effective zeolite-based adsorptive composites from CA residuals for the selective removal of dye pollutants from CA waste.

Differential cytotoxic effects of fenbendazole on mouse lymphoma EL-4 cells and spleen cells

  • Haebeen Jung;You-Jeong Lee;Hong-Gu Joo
    • Korean Journal of Veterinary Research
    • /
    • v.63 no.1
    • /
    • pp.2.1-2.7
    • /
    • 2023
  • Fenbendazole (FBZ) is a benzimidazole anthelmintic widely used to treat parasitic infections. The anticancer effect of FBZ has been recently highlighted leading to its consideration as a potential anticancer agent. Although previous studies have demonstrated the effect of FBZ on cancer cells, there is a paucity of studies on the effect of FBZ on lymphoma cells and normal immune cells. Herein, we investigated the effects of FBZ on a mouse lymphoma cell line, EL-4 cells, and spleen cells, using vincristine as a positive control. The cellular metabolic activity of EL-4 cells was decreased by FBZ, but that of the spleen cells was not decreased. Moreover, FBZ reduced the mitochondrial membrane potential and induced reactive oxygen species production in EL-4 cells, but not in spleen cells. FBZ induced G2/M phase arrest and increased the sub G0/G1 phase ratio, indicating apoptosis. Furthermore, compared to the control cells, the reactivity of spleen cells pretreated with FBZ to lipopolysaccharide was maintained. In summary, FBZ is cytotoxic to EL-4 cells, but not to spleen cells. This study provides experimental evidence that FBZ exerts an anticancer effect, and less cytotoxic effects and functional damage to normal spleen cells.

Synergistic anticancer activity of disulfiram/copper against mouse lymphoma cells (마우스 림프종세포에 대한 disulfiram/copper의 항암증진효과)

  • Jung, Haebeen;Joo, Hong-Gu
    • Korean Journal of Veterinary Research
    • /
    • v.62 no.1
    • /
    • pp.3.1-3.7
    • /
    • 2022
  • Disulfiram (DSF) is a marketed drug to treat patients with alcohol dependence by inhibiting aldehyde dehydrogenase. Over the last few decades, DSF has been shown to have anticancer effects through different mechanisms. Moreover, this effect can be elevated when used with copper (Cu). Subsequent studies have been conducted on various cancers, but few on lymphoma. This study investigated the anticancer effects of DSF on lymphoma and how this effect changed when treated with Cu. DSF synergistically decreased the metabolic activity of EL4 lymphoma cells when combined with Cu. At 1 µM of DSF alone, the metabolic activity of EL4 cells decreased by 49% compared to the control, whereas it decreased by 87% with a DSF + CuCl2 treatment. Rhodamine 123 and 2',7'-dichlorofluorescein diacetate staining showed that DSF induced the reduction of the mitochondrial membrane potential and promoted the production of reactive oxygen species. In particular, the combined treatment of DSF + Cu induced cell death based on multiple assays, including annexin V-fluorescein isothiocyanate/propidium iodide staining. Overall, DSF has anticancer effects on lymphoma cells and exhibits synergistic effects when combined with Cu. This study provides some valuable information to broaden the use of DSF in clinics and basic research.

Free Radical Scavenging and Antioxidant Activities of Water Extracts from Amannia multiflora, Amannia coccinea, Salix gracilistyla Inhabiting Along the Nakdong River (Republic of Korea)

  • Jayasingha Arachchige Chathuranga Chanaka Jayasingha;Mi-Hwa Lee;Chang-Hee Kang;Yung Hyun Choi;Gi-Young Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.31-31
    • /
    • 2022
  • Plant-derived antioxidants are used as a healthy diet and are known to inhibit various human diseases. In this study, we investigated free radical scavenging and antioxidant activity of extracts from three plants (Ammannia multiflora, Ammannia coccinea and Salix gracilistyla) with the most DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity from 196 plant extracts inhabiting along Nakdong River in Republic of Korea. The three extracts also have strong total antioxidant activity. Moreover, the extracts inhibited hydrogen peroxide (H2O2)-induced reactive oxygen species production and depolarized mitochondrial membrane potential in RAW264.7 macrophages. In zebrafish larvae, 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescent intensity, induced by H2O2, was markedly reduced by the extracts of A. multiflora, A. coccinea and S. gracilistyla. Meanwhile, the extracts were upregulated Nrf2 and HO-1 expression, and an HO-1 inhibitor reversed the extract-induced oxidative responses both in vivo and in vitro. The data suggest that the extracts of A. multiflora, A. coccinea, and S. gracilistyla exert potential free radical scavenging and antioxidant capacities both in vivo and in vitro by activating the Nrf2/HO-1 signaling pathway.

  • PDF

Predicting Initial Construction Costs of Electrolysis Hydrogen Production Plants for Building Sustainable Energy Systems (지속 가능한 에너지 시스템 구축을 위한 전기분해 수소 생산 플랜트 초기 건설비용 예측)

  • SUNGWOOK KANG;JOONHEON KIM;JONGHWA PARK;DAEMYEONG CHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.3
    • /
    • pp.257-268
    • /
    • 2024
  • Hydrogen serves as a clean energy source with potential applications across various sectors including electricity, transportation, and industry. In terms of policy and economic support, governmental policy backing and economic incentives are poised to accelerate the commercialization and expansion of hydrogen energy technologies. Hydrogen energy is set to become a cornerstone for a sustainable future energy system. Additionally, when constructing hydrogen production plants, economic aspects must be considered. The essence of hydrogen production plants lies in the electrolysis of water, a process that separates water into hydrogen and oxygen using electrical energy. The initial capital expenditure (CAPEX) for hydrogen production plants can vary depending on the electrolysis technology employed. This study aims to provide a comprehensive understanding of hydrogen production technologies as well as to propose a method for predicting the CAPEX of hydrogen production plants.

A Study on Oxygen Reduction Reaction of PtM Electrocatalysts Synthesized by a Modified Polyol Process (수정된 폴리올 방법을 적용하여 합성한 PtM 촉매들의 산소환원반응성 연구)

  • Yang, Jongwon;Hyun, Kyuwhan;Chu, Cheunho;Kwon, Yongchai
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.78-83
    • /
    • 2014
  • In this research, we evaluated the performance and characteristics of carbon supported PtM (M = Ni and Y) alloy catalysts (PtM/Cs) synthesized by a modified polyol method. With the PtM/Cs employed as a catalyst for the oxygen reduction reaction (ORR) of cathodes in proton exchange membrane fuel cells (PEMFCs), their catalytic and ORR activities and electrical performance were investigated and compared with those of commercial Pt/C. Their particle sizes, particle distributions and electrochemically active surface areas (EAS) were measured by TEM and cyclic voltammetry (CV), while their ORR activity and electrical performance were explored using linear sweeping voltammetries with rotating disk electrodes and rotating ring-disk electrodes as well as PEMFC single cell tests. TEM and CV measurements show that PtM/Cs have the compatible particle size and EAS with Pt/C. When it comes to ORR activity, PtM/C showed the equivalent or better half-wave potential, kinetic current density, transferred electron number per oxygen molecule and $H_2O_2$ production(%) to or than commerical Pt/C. Based on results gained by the three electrode tests, when the PEMFC single cell tests were carried out, the current density measured at 0.6 V and maximum power density of PEMFC single cell adopting PtM/C catalysts were better than those adopting Pt/C catalyst. It is therefore concluded that PtM/C catalysts synthesized by modified polyol can result in the equivalent or better ORR catalytic capability and PEMFC performance to or than commercial Pt/C catalyst.

Effect of Electrochemical Reduction of Ruthenium Black Cathode Catalyst on the Performance of Polymer Electrolyte Membrane Fuel Cells (캐소드 루테늄 촉매의 전기화학적 환원 처리가 고분자 전해질 연료전지 성능에 미치는 영향)

  • Choi, Jong-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.110-116
    • /
    • 2011
  • Ru black was used for cathode catalyst in polymer electrolyte membrane fuel cell which showed low performance at the initial test. However, it was observed that the performance of Ru black cathode was dramatically enhanced after certain kind of experiment compared with initial one. It might be due to an electrochemical treatment in which a voltage was applied to the Ru cathode for constant period time. When a constant potential of 0.1 V was applied to Ru cathode for 30 min, the fuel cell performance of Ru cathode showed the best results. In order to investigate the effect of electrochemical treatment on the performance enhancement, the characteristics of electrochemically treated Ru black was compared with that of Ru black which was reduced under $H_2$ atmosphere. From XRD results, it was turned out that Ru black was not completely converted to metallic Ru by electrochemical treatment, but it is sufficient to be one of reasons for the performance enhancement. According to the results of CO stripping voltammetry, it was observed that some Ru was removed from Ru electrode by electrochemical treatment which might have a bad effect on the fuel cell performance. The removal of some Ru from as-received Ru black by electrochemical treatment is also another reason for the enhancement of fuel cell performance.

Stability of Partial Nitrification and Microbial Population Dynamics in a Bioaugmented Membrane Bioreactor

  • Zhang, Yunxia;Xu, Yanli;Jia, Ming;Zhou, Jiti;Yuan, Shouzhi;Zhang, Jinsong;Zhang, Zhen-Peng
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1656-1664
    • /
    • 2009
  • Bioaugmentation of bioreactors focuses on the removal of numerous organics, with little attention typically paid to the maintenance of high and stable nitrite accumulation in partial nitrification. In this study, a bioaugmented membrane bioreactor (MBR) inoculated with enriched ammonia-oxidizing bacteria (AOB) was developed, and the effects of dissolved oxygen (DO) and temperature on the stability of partial nitrification and microbial community structure, in particular on the nitrifying community, were evaluated. The results showed that DO and temperature played the most important roles in the stability of partial nitrification in the bioaugmented MBR. The optimal operation conditions were found at 2-3 mgDO/l and $30^{\circ}C$, achieving 95% ammonia oxidization efficiency and nitrite ratio ($NO_2^-/{NO_x}^-$) of 0.95. High DO (5-6 mg/l) and low temperature ($20^{\circ}C$) had negative impacts on nitrite accumulation, leading to nitrite ratio drop to 0.6. However, the nitrite ratio achieved in the bioaugmented MBR was higher than that in most previous literatures. Denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH) were used to provide an insight into the microbial community. It showed that Nitrosomonas-like species as the only detected AOB remained predominant in the bioaugmented MBR all the time, and coexisted with numerous heterotrophic bacteria. The heterotrophic bacteria responsible for mineralizing soluble microbial products (SMP) produced by nitrifiers belonged to the Cytophaga-Flavobacterium-Bacteroides (CFB) group, and $\alpha$-, $\beta$-, and $\gamma$- Proteobacteria. The fraction of AOB ranging from 77% to 54% was much higher than that of nitrite-oxidizing bacteria (0.4-0.9%), which might be the primary cause for the high and stable nitrite accumulation in the bioaugmented MBR.

Curcumin Attenuates Hydrogen Peroxide Induced Oxidative Stress on Semen Characteristics during In Vitro Storage of Boar Semen

  • Jang, Hyun-Yong;Kim, Young-Han;Cheong, Hee-Tae;Kim, Jong-Taek;Park, In-Chul;Park, Choon-Keun;Yang, Boo-Keun
    • Reproductive and Developmental Biology
    • /
    • v.33 no.2
    • /
    • pp.99-105
    • /
    • 2009
  • Curcumin is a major active component of the food flovour tumeric. It has been used for the treatment of many diseases such as inflammatory and infectious diseases, cancer and other disease due to its antioxidant properties. Curcumin is a powerful scavenger of many free radicals such as superoxide anion, hydroxyl radical and nitric oxide. The objective of this study was to investigate the antioxidative effects of curcumin against hydrogen peroxide on semen quality during in vitro storage of boar semen. The sperm treated with different concentration of curcumin (1, 5 and 10 ${\mu}M$) in the presence or absence of hydrogen peroxide (250 ${\mu}M\;H_2O_2$) were incubated for 3, 6 and 9 hr at $37^{\circ}C$ and analyzed sperm characteristics such as motility, membrane integrity (MI), lipid peroxidation (LPO), reactive oxygen species (ROS) and DNA fragmentation (DF). The sperm motility and MI in $H_2O_2$ treated group ($47.8%{\pm}6.8$ and $24.8%{\pm}2.2$) were significantly decreased when compare to curcumin treated group ($79.8%{\pm}2.7$ and $34.6%{\pm}1.0$, respectively) irrespective of incubation periods(p<0.05). The LPO of spermatozoal plasma membrane was measured by thiobarbituric acid (TBA) reactions for malondialdehyde (MDA), MDA level in control ($11.6{\pm}0.6\;nmol/L{\times}10^6$) and curcumin groups ($10.7{\pm}0.3\;nmol/L{\times}10^6$) were lower than those of curcumin plus $H_2O_2$ ($17.1{\pm}0.8\;nmol/L{\times}10^6$) or $H_2O_2$ group ($22.5{\pm}1.9\;nmol/L{\times}10^6$) from 3 to 9 hr incubation periods. The DF by sperm chromatin dispersion (SCD) test and ROS production measured by 2',7'-dichlorofluorescein (DCF) fluorescence intensity were no significantly difference through all experimental groups (p>0.05). Correlation among evaluation methods for sperm quality, motility vs MI and DF vs ROS was positively correlated while motility vs DF and ROS vs LPO were negatively correlated in all treatment groups. These results demonstrate that curcumin can effectively improve the sperm quality during in vitro storage of boar semen through its hydrogen peroxide scavenging mechanism as an antioxidant.