• 제목/요약/키워드: Oxygen membrane

검색결과 877건 처리시간 0.033초

Biphasic Activity of Chloroquine in Human Colorectal Cancer Cells

  • Park, Deokbae;Lee, Youngki
    • 한국발생생물학회지:발생과생식
    • /
    • 제18권4호
    • /
    • pp.225-231
    • /
    • 2014
  • Autophagy is a homeostatic degradation process that is involved in tumor development and normal development. Autophagy is induced in cancer cells in response to chemotherapeutic agents, and inhibition of autophagy results in enhanced cancer cell death or survival. Chloroquine (CQ), an anti-malarial drug, is a lysosomotropic agent and is currently used as a potential anticancer agent as well as an autophagy inhibitor. Here, we evaluate the characteristics of these dual activities of CQ using human colorectal cancer cell line HCT15. The results show that CQ inhibited cell viability in dose- and time-dependent manner in the range between 20 to 80 uM, while CQ did not show any antiproliferative activity at 5 and 10 uM. Cotreatment of CQ with antitumor agent NVP-BEZ235, a dual inhibitor of PI3K/mTOR, rescued the cell viability at low concentrations meaning that CQ acted as an autophagy inhibitor, but CQ induced the lethal effect at high concentrations. Acridine orange staining revealed that CQ at high doses induced lysosomal membrane permeabilization (LMP). High doses of CQ produced cellular reactive oxygen species (ROS) and cotreatment of antioxidants, such as NAC and trolox, with high doses of CQ rescued the cell viability. These results suggest that CQ may exert its dual activities, as autophagy inhibitor or LMP inducer, in concentration-dependent manner.

Pt-Ru/C 촉매를 이용한 직접메탄을 연료전지 운전 특성 (Operating Characteristics of Direct Methanol Fuel Cell Based on Pt-Ru/C Anode Catalyst)

  • 정두환;이창형;김창수;전영갑;신동열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1252-1254
    • /
    • 1997
  • Direct methanol fuel cell based on a proton-exchange membrane electrolyte was investigated. 60% Pt-Ru/C and 60%Pt/C catalysts were employed for methanol oxidation and oxygen reduction, respectively. Morphologies of the catalysts were investigated by x-ray power diffraction, energy dispersive x-ray spectroscopy, and transmission microscopy. Electrochemical characteristics of the catalysts were tested by using cyclic voltametry technique. I-V characteristics of the fuel cell were tested by changing methanol concentration, temperature, and Nafion type as a proton-exchange membrane electrolyte. AC impedance technique was used to investigate the electrochemical performance of the fuel cell. The performance of single cell was enhance with increasing cell temperature. High operation temperature attributed to the combined effects of the reduction of ohmic resistance and polarization. High cell voltage was obtained from the concentration of 205M methanol. With Nafion 112, a current density of $230mA/cm^2$ at 0.55V was obtained from the concentration of 2.5M methanol.

  • PDF

반도체 세정 공정에서의 초순수 (Application of ultra pure water in semiconductor wet cleaning process)

  • 송재인;박흥수;고영범;이문용
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1996년도 제4회 하계분리막 Workshop (초순수 제조와 막분리 공정)
    • /
    • pp.149-153
    • /
    • 1996
  • 반도체 소자 제조 공정이 고 집적화 됨에 따라 습식 세정방법에 의한 세정공정의 중요성이 더욱 증가 되어지고 있으며, 특히 그 중에서 전체 세정공정의 약 절반을 차지하고 있는 Deionised water에 의한 rinsing 공정의 경우 ultrapure water의 quality가 최근 지속적으로 향상이 되어짐에 따라 많은 발전을 자져 왔다. 일반적으로 Deionised water에 함유하고 있는 TOC(total oxidisable components), bacteria, metallic impurity, desolved oxygen cencentration, colloidal material impurity (예를 들면 Silica, oraganic substrate)등은 ultra pure water의 quality를 결정하는데 매우 중요한 factor로 작용하고 있으며, 이러한 불순물들이 반도체 제조공정중 wafer surface에 흡착되어 졌을때 여러형태의 defect들을 유발한다고 알려져 있다. 그러나 pseudommonas, flavobacterlum, alcaligene등의 기 얄려진 bacteria들의 경우 Deionised water를 supply해주는 배관의 Inner surface에 잘 흡착 되지만 고온의 water 혹은 과산화수소수($H_{2}O_{2}$) 를 이용하여 주기적으로 처리 해줌으로 인하여 이에 대한 문제점을 어느정도 최소화 시킬수 있다. 위의 두가지 방법중 전자의 경우 chemical을 사용하지 않고, 유지 및 관리가 간편하며, 용존산소량을 줄일수 있다는 점에서 장점이 있으나, 전 ultra pure water의 system이 열적으로 안정해야 하고 경제적인 문제가 수반하는 단점을 가지고 있다. 후자의 경우, 미량의 과산화수소수 (1~10,000 ppm)를 이용해 처리 해주는 방법의 경우 경제적으로 큰 장점이 있고, 처리가 단순하다는 장점이 있으나 과산화수소수 자체에 포함하고 있는 높은 impurit level, 그리고 처리후 장시간의 flushing time을 가져야 한다는 단점등이 존재 하고 있다.

  • PDF

새로이 분류된 천연 항암제 : Conjugated Dienoic Derivatives of Linoleic Acid (CLA) (Naturally-Occurring Novel Anticatcinogens : Conjugated Dienoic Derivatives of Linoliec Acid (CLA))

  • 하영래;마이클파리자
    • 한국식품영양과학회지
    • /
    • 제20권4호
    • /
    • pp.401-407
    • /
    • 1991
  • 동물실험을 통하여 새로이 밝혀진 항암제(anti-initiator/anti-ptomotor)인 CLA는 grilled ground beef에서 처음 분리되었다. CLA는 grilled ground beef 외에도, cheese 및 이들 관련식품에 많이 존재한다. CLA는 반추동물의 위에 서식하는 혐기성 bacteria에 의해 linoleic acid로부터 생성되며, 식품 가공 중에서도 생성된다. 이것은 또한 in vivo에서 linoleic acid의 carbon centered free radical 형태의 산화에 의해 생성되기도 한다. CLA는 아주 강력한 항산화제임이 밝혀져, 지금까지 알려지 있지 않았는 free radical에 대응하여 membrane을 보호하는 in situ defense mechanism 역할을 한다. 이는 또한 cytochrome P450 isozyme의 활성을 저해하는 반면, ODC 효소 활성 역시 저해한다. 그래서, 적어도 CLA의 이 세가지 biological activity가 CLA 항암기작에 관여하는 것으로 생각된다.

  • PDF

이중실관 생물 반응기에서의 구연산 생산과 Scale-up (Citric Acid Production and Scale-up in Dual Hollow Fiber Bioreactor)

  • 장호남;지동진;심상준
    • 멤브레인
    • /
    • 제2권2호
    • /
    • pp.122-128
    • /
    • 1992
  • 여러 크기의 이중실관 생물 반응기에서의 Aspergillus niger(KCTC 1232)를 이용한 구연산 생산 실험을 수행하였다. 초종 세포농도는 세포 성장구간 기준으로 300g/l에 달하였다. 공기와 산소의 공급 조건하에서의 단위 용적당의 생산성은 각각 0.63, 0.02g/l.h였고 이는 회분식 발효에 대해 10, 16배 증가한 결과이다. 공급배지의 초기 pH는 구연산의 생산에 중요한 요소이며 pH가 낮을수록 높은 구연산 생산수율을 얻을 수 있었다. Scale-up의 가능성을 알아보기 위해 반응기 unit와 배지의 공급속도를 변화시킨 결과 반응기 unit와 배지 공급속도의 증가는 기질의 높은 소비속도로 인해 생산성의 증가를 가져왔다.

  • PDF

연료전지 자동차 내 수소 공급 시스템에서 드레인 밸브 특성에 따른 드레인 로직 최적화 및 연비와 운전안정성을 고려한 물 관리 전략 개발 (Optimization of Condensate Water Drain Logic Depending on the Characteristics of Drain Valve in FPS of Fuel Cell Vehicle and Development of Anode Water Management Strategy to Achieve High Fuel Efficiency and Operational Stability)

  • 안득균;이현재;심효섭;김대종
    • 한국수소및신에너지학회논문집
    • /
    • 제27권2호
    • /
    • pp.155-162
    • /
    • 2016
  • A proton exchange membrane fuel cell (PEMFC) produces only water at cathode by an electrochemical reaction between hydrogen and oxygen. The generated water is transported across the membrane from the cathode to the anode. The transported water collected in water-trap and drained to the cathode within the humidifier outlet. If the condensate water is not being drained at the appropriate time, condensate water in the anode can cause the performance degradation or fuel efficiency degradation of fuel cell by the anode flooding or unnecessary hydrogen discharge. In this study, we proposed an optimization method of condensate water drain logic for the water drain performance and the water drain algorithm as considered the condensate water generating speed prep emergency case. In conclusion, we developed the water management strategy of fuel processing system (FPS) as securing fuel efficiency and operating stability.

고분자전해질 연료전지 분리판을 위한 Ni-P-rGO 무전해 복합도금층의 미세조직 분석 (Microstructure Analysis of Ni-P-rGO Electroless Composite Plating Layer for PEM Fuel Cell Separator)

  • Kim, Yeonjae;Kim, Jungsoo;Jang, Jaeho;Park, Won-Wook;Nam, Dae-Geun
    • 한국표면공학회지
    • /
    • 제48권5호
    • /
    • pp.199-204
    • /
    • 2015
  • Recently, fuel cell is a good alternative for energy source. Separator is a important component for fuel cell. In this study, The surface of separator was modified for corrosion resistance and electric conductivity. Reduced graphene oxide (rGO) was made by Staudenmaier's method. Nickel, phosphorus and rGO were coated on 6061 aluminum alloy as a separator of proton exchange membrane fuel cell by composite electroless plating. Scanning electron microscope, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy were used to examine the morphology of Ni-P-rGO. Surface images were shown that the rGO was dispersed on the surface of Ni-P electroless plating, and nickel was combined with the un-reduced oxygen functional group of rGO.

Removal of Organic Matter and Nutrient in Swine Wastewater Using a Membrane System

  • Lim, Seung Joo;Kim, Sun Kyong;Lee, Yong-gu;Kim, Tak-Hyun
    • 방사선산업학회지
    • /
    • 제6권1호
    • /
    • pp.75-82
    • /
    • 2012
  • Swine wastewater was treated using a unique sequence of ion exchange membrane bed system (IEBR). Organic matter and nutrient in swine wastewater was pre-treated by electron beam irradiation. The optimal dose for solubilization of organic matter in swine wastewater ranged from 20 kGy to 75 kGy. The carbohydrates, proteins, and lipids were investigated as the solubilized organic fraction of swine wastewater and proteins and lipids mainly contained of the solubilized organic matter. The solubilization of organic matter in swine wastewater was affected by the combination effect of temperature and a dose. The average chemical oxygen demand (COD) removal efficiency under room temperature conditions was 67.1%, while that under psychrophilic conditions was 54.6%. For removal of ammonia, the removal efficiency decreased from 63.6% at $23^{\circ}C$ to 33.5% $16.8^{\circ}C$. On the other hand, the removal of phosphorus was not a function of temperature. Struvite was one of main mechanisms in anaerobic condition.

The antioxidant roles of L-carnitine and N-acetyl cysteine against oxidative stress on human sperm functional parameters during vitrification

  • Ghorbani, Fatemeh;Nasiri, Zohreh;Koohestanidehaghi, Yeganeh;Lorian, Keivan
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제48권4호
    • /
    • pp.316-321
    • /
    • 2021
  • Objective: Amino acids can protect sperm structure in cryopreservation due to their antioxidant properties. Therefore, the present study aimed to investigate the protective effect of L-carnitine (LC) and N-acetyl cysteine (NAC) on motility parameters, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), DNA damage, and human sperm intracellular reactive oxygen species (ROS) during vitrification. Methods: Twenty normal human sperm samples were examined. Each sample was divided into six equal groups: LC (1 and 10 mM), NAC (5 and 10 mM), and cryopreserved and fresh control groups. Results: The groups treated with LC and NAC showed favorable findings in terms of motility parameters, DNA damage, and MMP. Significantly higher levels of intracellular ROS were observed in all cryopreserved groups than in the fresh group (p≤0.05). The presence of LC and NAC at both concentrations caused an increase in PMI, MMP, and progressive motility parameters, as well as a significant reduction in intracellular ROS compared to the control group (p≤0.05). The concentrations of the amino acids did not show any significant effect. Conclusion: LC and NAC are promising as potential additives in sperm cryopreservation.

Opposite Effects of Vitamin C and Vitamin E on the Antifungal Activity of Honokiol

  • Sun, Lingmei;Ye, Xiaolong;Ding, Dafa;Kai, Liao
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권4호
    • /
    • pp.538-547
    • /
    • 2019
  • The aim of the present study was to evaluate the effects of two well-known natural antioxidants, vitamin C (VC) and vitamin E (VE), on the antifungal activity of honokiol against Candida albicans. The broth microdilution method was employed to test the antifungal activities of honokiol with or without antioxidants in the medium against C. albicans strain. Intracellular reactive oxygen species and lipid peroxidation were determined by fluorescence staining assay. Mitochondrial dysfunction was assessed by detecting the mitochondrial DNA and the mitochondrial membrane potential. We observed that VC could significantly potentiate the antifungal activities of honokiol while VE reduced the effectiveness of honokiol against C. albicans. In addition, VC accelerated honokiol-induced mitochondrial dysfunction and inhibited glycolysis leading to a decrease in cellular ATP. However, VE could protect against mitochondrial membrane lipid peroxidation and rescue mitochondrial function after honokiol treatment. Our research provides new insight into the understanding of the action mechanism of honokiol and VC combination against C. albicans.