• Title/Summary/Keyword: Oxygen membrane

Search Result 877, Processing Time 0.033 seconds

Oxygen Permeation Properties of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ Mixed-conducting Membrane (혼합전도성 $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ 분리막의 산소투과 특성)

  • Lim, Kyoung-Tae;Cho, Tong-Lae;Lee, Kee-Sung;Woo, Sang-Kuk;Park, Kee-Bae;Kim, Jong-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.787-793
    • /
    • 2001
  • $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ membranes were fabricated by solid-state reaction. We investigated sintering behavior and oxygen permeation flux as a function of time-on-stream, temperature and upstream oxygen partial pressure. The oxygen was permeated at temperatures form 750$^{\circ}$C to 950$^{\circ}$C by mixed conducting through oxygen vacancy diffusion in the dense membrane. The oxygen permeation flux through the membrane were about 0.1ml/$cm^3{\cdot}$min at 850$^{\circ}$C. A constant time was required for reaching stable oxygen flux, and oxygen partial pressure affected the oxygen permeation fluxes.

  • PDF

Oxygen Permeability Measurement of $ZrO_2-TiO_2-YB_2O_3$ Mixed Conductor

  • Hitoshi Naito;Kim, Hitoshi ishima;Toru Takahashi;Hiroo Yugami
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.124-128
    • /
    • 2000
  • Electrical properties of $ZrO_2-TiO_2Yb_2O_3$mixed conductor (Ti-YbSZ) were investigated. This mixed conductor can be applied as a membrane for gas separation at high temperatures. The total conductivity decreased with increasing the $TiO_2$concentration. At high temperatures, the rate of the conductivity degradation became smaller than that at low temperatures. From the oxygen partial pressure dependence of the total conductivity of Ti-YbSZ, the electronic conductivity increased with increasing $TiO_2$concentration at low oxygen partial pressures and at high temperatures. Both 15 and 20 mol% $TiO_2$doped YbSZ showed high oxygen permeability. Mixed conductors, which has high $TiO_2$concentration in YbSZ, are promising materials for using as a membrane for gas separation at high temperatures.

  • PDF

Oxygen Transfer Rate Coefficient of Membrane Aeration Bioreactor for Vero Cell Culture

  • Jeon, Ju-Mi;Jeong, Yeon-Ho;Kim, Ik-Hwan;Lee, Sang-Jong;Jang, Yong-Geun;Jeon, Gye-Taek
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.269-270
    • /
    • 2002
  • Oxygen is a key substrate in animal cell metabolism and its consumption is thus a parameter of great interest for monitoring and control in animal cell culture bioreactor. The use of a gas-permeable membrane offered the possibility to provide the required quantity of oxygen into the culture. while avoiding problems of foaming or shear damage generally linked to sparging. For determining the optimum DO control strategy of this gas-permeable membrane aeration bioreactor, the oxygen transfer rate coefficient was measured with varying $N_2$ ratio in inlet air. The results showed that an increasing mass flow rate of nitrogen reduced the $K_La$ value. and 5% nitrogen in air did not result in any oxygen limitation.

  • PDF

Preparation and Oxygen Permeability of True-IPN's based on Silicone Rubber and Polystyrene (실리콘 고무와 폴리스틸렌을 이용한 True-IPNs의 제조 및 산소투과 특성)

  • Kim, Jun-Hyun;Byun, Hong-Sik
    • Membrane Journal
    • /
    • v.10 no.4
    • /
    • pp.205-212
    • /
    • 2000
  • The true-lPN's based on silicone rubber(SR)rrubbery polymer) and polystyrenc(PS)(glass polymer) were prepared by using the sequential IP!\' method_ The characteristic of permeability of oxygen/nitrogen was investigated with the control of the amount of PSOO-70 wt%) in the true-lPN, As a results of fTlR and N1Vm. the SRIPS membrane was synthesised successfully with the IPN synthetic method, Thermal analysis resulls indicated that the degree of mixing of IPN increased with increase of the amount of PS in the IPN. Regarding the characteristic of gas permeability, the membrane showed a trend of decrease in oxygen permeability as the PS content increased, The oxygen permeability of membrane having 50 wt% of PS. however, increased momentarily, Selectivity, meanwhile, increased slightly as the contents of I'S increased. However, the maximum value of oxygen selectivity, which is 20.6% enhanced Value, was obtained with the membrane containing 50 wt% of PS. This can be explained that the behavior of lPN, i.e. mutual assistance, is pronounced in the membrane having 50 wt% of PS.

  • PDF

Preparation and Oxygen Permeability of Nb-doped BCFN Ceramic Membrane (Nb-doped BCFN 세라믹 막의 제조 및 산소투과 특성)

  • Kim, Jong-Pyo;Son, Sou-Hwan;Park, Jung-Hoon;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.55-61
    • /
    • 2011
  • $BaCo_{0.7}Fe_{0.22}Nb_{0.08}O_{3-{\delta}}$ oxide was synthesized by solid state reaction method. Dense ceramic membrane was prepared using as-prepared powder by pressing and sintering at $1,200^{\circ}C$. XRD result of membrane showed single perovskite structure. Leakage and oxygen permeation test were conducted on the membrane sealed by glass ring as a sealing material. The oxygen permeation flux increased with increasing temperature and pressure difference and maximum oxygen permeation flux was $2.3mL/min{\cdot}cm^2$ at $950^{\circ}C$ with $Po_2$ = 0.63 atm of oxygen partial pressure. The oxygen permeation in the condition of air with $CO_2$ (300 ppm) as feed stream decreased as much as only maximum 2.9% in comparison with air feed stream. It indicated $BaCo_{0.7}Fe_{0.22}Nb_{0.08}O_{3-{\delta}}$ membrane is more stable than another membrane for carbon dioxide.

Oxygen Permeability and Resistance to Carbon Dioxide of SrCo0.8Fe0.1Nb0.1O3-δ Ceramic Membrane (SrCo0.8Fe0.1Nb0.1O3-δ 세라믹 분리막의 산소투과 특성 및 이산화탄소에 대한 내성)

  • Kim, Eun Ju;Park, Se Hyoung;Park, Jung Hoon;Baek, Il Hyun
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.415-421
    • /
    • 2015
  • $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ oxide was synthesized by solid state reaction method. Dense ceramic membrane was prepared using as-prepared powder by pressing and sintering at $1250^{\circ}C$. XRD result of membrane showed single perovskite structure. The oxygen permeability were measured under 0.21 atm of oxygen partial pressure ($P_{O_2}$) and between 800 and $950^{\circ}C$. The oxygen permeation flux of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ membrane was increased with the increasing temperature. The maximum oxygen permeation flux was $1.839mL/min{\cdot}cm^2$ at $950^{\circ}C$. Long period permeability experiment was carried out to confirm the phase stability and $CO_2$-tolerance of membrane containing Nb in the condition of air with $CO_2$ (500 ppm) as feed stream at $900^{\circ}C$. The phase stability and $CO_2$-tolerance of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ were investigated by XRD and TG analysis. The result of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ which exposed carbon dioxide for 100 hours indicated 8wt% of $SrCO_3$. But it was known that the level of $SrCO_3$ production dose not have a significant effect on oxygen permeability.

Optimization of an Advanced Oxidation with Ozone and Ceramic Membrane Integrated Process for Greywater Reuse (중수 재이용을 위한 오존 고도산화 및 세라믹 분리막 일체형 공정의 최적화 연구)

  • Lee, Jonghun;Rho, Hojung;Park, Kwang Duck;Woo, Yun Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.433-441
    • /
    • 2021
  • The aim of this study was to optimize the ozonation and ceramic membrane integrated process for greywater reclamation. The integrated process is a repeated sequential process of filtration and backwash with the same ceramic membrane. Also, this study used ozone and oxygen gas for the backwashing process to compare backwashing efficiency. The study results revealed that the optimum filtration and backwash time for the process was 10 minutes each when comparing the filtrate flow and membrane recovery rate. The integrated process was operated at three different operating conditions with i) 10 minutes for filtration and 10 minutes for ozonation, ii) 10 minutes for filtration and 10 minute for oxygen aeration, and iii) continuous filtration without any aeration for synthetic greywater. The integrated process with ozone backwashing could produce 0.55 L/min of filtrate with an average of 18.42% permeability recovery, while the oxygen backwashing produced 0.47 L/min and 6.26%, respectively. And without any backwashing, the integrated process could produce 0.29 L/min. This shows that the ozone backwash process is capable of periodically recovering from membrane fouling. The resistance of the fouled membrane was approximately 34.4% for the process with ozone backwashing, whereas the resistance was restored by 10.8% for the process with oxygen backwashing. Despite the periodical ozone backwashing and chemical cleaning, irreversible fouling gradually increased approximately 3 to 4%. Approximately 97.6% and 15% turbidity and TOC were removed by ceramic membrane filtration, respectively. Therefore, the integrated process with ozonation and ceramic membrane filtration is a potential greywater treatment process.

Electrochemical Properties of a Zirconia Membrane with a Lanthanum Manganate-Zirconia Composite Electrode and its Oxygen Permeation Characteristics by Applied Currents

  • Park, Ji Young;Jung, Noh Hyun;Jung, Doh Won;Ahn, Sung-Jin;Park, Hee Jung
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.197-204
    • /
    • 2019
  • An electrochemical oxygen permeating membrane (OPM) is fabricated using Zr0.895Sc0.095Ce0.005Gd0.005O2-δ (ScCeGdZ) as the solid electrolyte and aLa0.7Sr0.3MnO3-bScCeGdZ composite (LZab, electrode) as the electrode. The crystal phase of the electrode and the microstructure of the membrane is investigated with X-ray diffraction and scanning electron microscopy. The electrochemical resistance of the membrane is examined using 2-p ac impedance spectroscopy, and LZ55 shows the lowest electrode resistance among LZ82, LZ55 and LZ37. The oxygen permeation is studied with an oxygen permeation cell with a zirconia oxygen sensor. The oxygen flux of the OPM with LZ55 is nearly consistent with the theoretical value calculated from Faraday's Law below a critical current. However, it becomes saturated above the critical current due to the limit of the oxygen ionic conduction of the OPM. The OPM with LZ55 has a very high oxygen permeation flux of ~ 3.5 × 10-6 mol/㎠s in I = 1.4 A/㎠.

Characteristics of dissolved gases separated from water mixed with exhalation gases without using a compressor

  • Heo, Pil Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.916-921
    • /
    • 2016
  • It is possible for humans to breathe underwater using dissolved oxygen. However, unlike fish, humans need large amounts of oxygen to breathe underwater. Water generally contains small amounts of dissolved oxygen. To get enough dissolved oxygen from water, great volumes of it should be supplied into a separation device. If exhalation gases are used, the amounts of water supplied into the membrane can be decreased. However, the characteristics of exhalation gases after passage through the separation device need to be investigated. To reuse the exhalation gases, the concentration of carbon dioxide should be decreased. A compressor is needed to supply the exhalation gases because of the high pressure generated in the membrane inlet. However, compressors require a lot of power and are heavy, so it is not proper to get the portable separation device. A system without the compressor is needed. If the pressure of the position mixed from the exhalation is less than atmosphere, the compressor is not needed. In this thesis, characteristics of the gases which are mixed with exhalation gases and separated from water after passing the membrane are investigated. The compositions of carbon dioxide, oxygen, and nitrogen are measured with the gas chromatography. The effects of water and exhalation gas flow rates on characteristics of gases separated from water after the membrane are showed.

Preparation and Characteristics of a Single-layer PVA Laminated CTA/PCL Membrane for Oxygen Biosensor Electrode (산소센서용 CTA/PCL 효소고정화막과 반투막을 단일화한 PVA적층막의 제조 및 특성)

  • Seo, Jong-Won;Kim, Tae-Jin;Jeong, Yong-Seob;Yoon, Jeong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.247-252
    • /
    • 1999
  • The oxygen electrode of a biosensor needs enzyme immobilized membrane and a dialysis membrane to measure the oxygen concentration that remains after an enzyme reacts with its substrate. Accodingly, a single-layer PVA laminated CTA/PCL membrane was developed as an oxygen biosensor electrode. The enzymes were immobilized on a cellulose triacetate/polycarprolactone membrane using the 1,1'-carbonyl diimidazole(CDI) method, and then laminated with polyvinyl alcohol, aldehyde and acid. The alcohol oxidase and PVA laminated CTA/PCL membrane was tested with various concentration of enzyme substrates using a Yellow Springs Instrument(YSI) oxygen sensor. Under 5-10mmol substrates produced $0.37{\sim}0.83{\mu}A$(r=0.995) currents, and ater 8 weeks the glucose oxidase activity remained at about 56%, while the other activities remained very low. A SEM indicated a smooth surface and tightly attached PVA on the enzyme-immobilized CTA/PCL membranes.

  • PDF