• Title/Summary/Keyword: Oxygen inhibition layer

Search Result 13, Processing Time 0.021 seconds

A shell layer entrapping aerobic ammonia-oxidizing bacteria for autotrophic single-stage nitrogen removal

  • Bae, Hyokwan;Choi, Minkyu
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.376-381
    • /
    • 2019
  • In this study, a poly(vinyl) alcohol/sodium alginate (PVA/SA) mixture was used to fabricate core-shell structured gel beads for autotrophic single-stage nitrogen removal (ASNR) using aerobic and anaerobic ammonia-oxidizing bacteria (AAOB and AnAOB, respectively). For stable ASNR process, the mechanical strength and oxygen penetration depth of the shell layer entrapping the AAOB are critical properties. The shell layer was constructed by an interfacial gelling reaction yielding thickness in the range of 2.01-3.63 mm, and a high PVA concentration of 12.5% resulted in the best mechanical strength of the shell layer. It was found that oxygen penetrated the shell layer at different depths depending on the PVA concentration, oxygen concentration in the bulk phase, and free ammonia concentration. The oxygen penetration depth was around $1,000{\mu}m$ when 8.0 mg/L dissolved oxygen was supplied from the bulk phase. This study reveals that the shell layer effectively protects the AnAOB from oxygen inhibition under the aerobic conditions because of the respiratory activity of the AAOB.

IS AN OXYGEN INHIBITION LAYER ESSENTIAL FOR THE INTERFACIAL BONDING BETWEEN RESIN COMPOSITE LAYERS? (Layering시 복합레진 층간의 계면 결합에서 oxygen inhibition layer가 필수적인가?)

  • Kim, Sun-Young;Cho, Byeong-Hoon;Baek, Seung-Ho;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.4
    • /
    • pp.405-412
    • /
    • 2008
  • This study was aimed to investigate whether an oxygen inhibition layer (OIL) is essential for the interfacial bonding between resin composite layers or not. A composite (Z-250, 3M ESPE) was filled in two layers using two aluminum plate molds with a hole of 3.7 mm diameter. The surface of first layer of cured composite was prepared by one of five methods as followings, thereafter second layer of composite was filled and cured: Group 1 - OIL is allowed to remain on the surface of cured composite; Group 2 - OIL was removed by rubbing with acetone-soaked cotton; Group 3 - formation of the OIL was inhibited using a Mylar strip; Group 4 - OIL was covered with glycerin and light-cured; Group 5 (control) - composite was bulk-filled in a layer. The interfacial shear bond strength between two layers was tested and the fracture modes were observed. To investigate the propagation of polymerization reaction from active area having a photo-initiator to inactive area without the initiator, a flowable composite (Aelite Flow) or an adhesive resin (Adhesive of ScotchBond Multipurpose) was placed over an experimental composite (Exp_Com) which does not include a photoinitiator and light-cured. After sectioning the specimen, the cured thickness of the Exp_Com was measured. The bond strength of group 2, 3 and 4 did not show statistically significant difference with group 1. Groups 3 and 4 were not statistically significant different with control group 5. The cured thicknesses of Exp_Com under the flowable resin and adhesive resin were 20.95 (0.90) urn and 42.13 (2.09), respectively.

Corrosion Inhibition Screening of 2-((6-aminopyridin-2-yl)imino)indolin-3-one: Weight Loss, Morphology, and DFT Investigations

  • Nadia Betti;Ahmed A. Al-Amiery
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.10-20
    • /
    • 2023
  • Because of its inexpensive cost, mild steel is frequently employed as a construction material in different industries. Unfortunately, because of its limited resistance to corrosion, a protective layer must be applied to keep it from decaying in acidic or basic environments. The presence of heteroatoms, such as nitrogen, oxygen, and pi-electrons in the Schiff base could cause effective adsorption on the mild steel surface, preventing corrosion. The weight loss method and scanning electron microscopy (SEM) were used to investigate the inhibitory effects of APIDO on mild steel in a 1 M hydrochloric acid environment. The efficiency of inhibition increased as the inhibitor concentration increased and decreased as the temperature increased. The SEM analysis confirmed that the corrosion inhibition of APIDO proceeded by the formation of an organic protective layer over the mild steel surface by the adsorption process. Simulations based on the density functional theory are used to associate inhibitory efficacy with basic molecular characteristics. The findings acquired were compatible with the experimental information provided in the research.

THE EFFECT OF OXYGEN INHIBITION ON INTERFACIAL BONDING BETWEEN COMPOSITE RESIN LAYERS (복합레진 적층계면에서 oxygen inhibition의 영향에 관한 연구)

  • Choi, Su-Mi;Park, Jae-Hong;Choi, Sung-Chul;Kim, Kwang-Chul;Choi, Young-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.3
    • /
    • pp.298-307
    • /
    • 2010
  • The purpose of this study was to assess the effect on oxygen inhibition layer(OIL) for the interfacial bonding between resin composite layers, including shear bond strength, fracture modes and degree of conversion. The first layer of specimen was filled with Z-250(shade A3) and was cured for 40s. The second layer of specimen was filled with same composite(shade A1) and was cured for 40s. The first layer of specimens for each group were prepared by methods as followings. Control(curing in atmospheric air), Group1(curing against Mylar strip), Group2(scrubbed with a acetone-soaked cotton), Group3(using Tescera light cup), Group4(using Tescera heat cup), Group5(stored in disti1led water for 30days at $37^{\circ}C$), Group6 (using bonding agent). The results were as follows: 1. There was no statistically significant different shear bond strength between control and group 1(p>0.05). 2. Group 2 showed significantly lower shear bond strength than control and group 1(p<0.05). 3. The observation of the fracture surface leads to the evidence that a major difference occurs in the case of control, group1 and group 3 samples which break mainly cohesively while the other groups break in majority adhesively. 4. The results of FTIR showed that the degree of conversion was the highest in group 2 and the lowest in control group(p<0.05). It can be concluded that an OIL is not necessary for bonding with composite resin. But if a reduced critical amount of the unreacted monomer is present, it was detrimental to bonding additional layers of composite. Further study, such as the quantitative analysis of the unreacted monomer are required.

Inhibition of Pitting Corrosion Failure of Copper Tubes in Wet Sprinkler Systems (스프링클러 구리배관의 공식 파손 억제)

  • Suh, Sang Hee;Suh, Youngjoon;Lee, Jonghyuk;Kwon, HyukSang
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.89-99
    • /
    • 2020
  • The inhibition of pitting corrosion failure of copper sprinkler tubes in wet sprinkler systems was studied. First, an apparatus and technology for removing air in the sprinkler tubes by vacuum pumping and then filling the tubes with water were developed. Using this apparatus and technology, three methods for inhibiting the pitting corrosion of the copper sprinkler tubes installed in several apartment complexes were tested. The first one was filling the sprinkler tubes with water bubbled by high-pressure nitrogen gas to reduce the dissolved oxygen concentration to lower than 2 ppm. In the second method, the dissolved oxygen concentration of water was further reduced to lower than 0.01 ppm by sodium sulfite. In the third method, the sprinkler tubes were filled with benzotriazole (BTAH) dissolved in water. The third method was the most effective, reducing the failure frequency of the sprinkler tubes due to pitting corrosion by more than 80%. X-ray photoelectron spectroscopy analyses confirmed that a Cu-BTA layer was well coated on the inside surface of the corrosion pit, protecting it from corrosion. A potentiodynamic polarization test showed that BTAH should be very effective in reducing the corrosion rate of copper in the acidic environment of the corrosion pit.

Comprehensive Analysis of the Corrosion Inhibition Performance of 4-Piperonylideneaminoantipyrine for Mild Steel in HCl Solution: Concentration, Time, Temperature Effects, and Mechanistic Insights

  • Ahmed Y. I. Rubaye;Sabah M. Beden;Ahmed A. Alamiery;A. A. H. Kadhum;Waleed K. Al-Azzawi
    • Corrosion Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.20-32
    • /
    • 2024
  • Metal corrosion in acidic environments is a major issue in various industrial applications. This study evaluates the 4-piperonylideneaminoantipyrine (PPDAA) corrosion inhibition efficiency for mild steel in a hydrochloric acid (HCl) solution. The weight loss method was used to determine the corrosion inhibition efficiency at different concentrations and immersion time periods. Results revealed that the highest inhibition efficiency (94.3%) was achieved at 5 mM concentration after 5 hours of immersion time. To inspect the surface morphology of the inhibitor film on the mild steel surface, scanning electron microscopy (SEM) was used before and after immersion in 1.0 M HCl. Density functional theory (DFT) calculations were performed to investigate the molecular structure and electronic properties of the inhibitor molecule to understand the corrosion inhibition mechanism. Theoretical results showed that the inhibitor molecule can adsorb onto the mild steel surface through its nitrogen and oxygen atoms, forming a protective layer that prevents HCl corrosive attack. These findings highlight the potential of PPDAA as an effective corrosion inhibitor for mild steel in HCl solution. Moreover, combining experimental and theoretical approaches provides insights into the mechanism of corrosion inhibition, which is essential for developing effective strategies to prevent metal corrosion in acidic environments.

Polymerized Organic Thin Films and Comparison on their Physical and Electrochemical Properties

  • Cho, S.H.;You, Y.J.;Kim, J.G.;Boo, J.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.1
    • /
    • pp.9-13
    • /
    • 2003
  • Plasma polymerized organic thin films were deposited on Si(100), glass and metal substrates at $25∼100 ^{\circ}C$ using thiophene and toluene precursors by PECVD method. In order to compare physical and electrochemical properties of the as-grown thin films, the effects of the RF plasma power in the range of 30∼100 W and deposition temperature on both corrosion protection efficiency and physical properties were studied. We found that the corrosion protection efficiency ($P_{k}$), which is one of the important factors for corrosion protection in the interlayer dielectrics of microelectronic devices application, was increased with increasing RF power. The highest $P_{k}$ value of plasma polymerized toluene film (85.27% at 70 W) was higher than that of the plasma polymerized thiophene film (65.17% at 100 W), indicating inhibition of oxygen reduction. The densely packed and tightly interconnected toluene film could act as an efficient barrier layer to the diffusion of molecular oxygen. The result of contact angle measurement showed that the plasma polymerized toluene films have more hydrophobic surface than those of the plasma polymerized thiophene films.

Effect of Oxygen Partial Pressure on Tungsten-Alumina Bonding Behavior (텅스텐-알루미나 접합거동에 미치는 산소분압의 영향)

  • 박정현;이상진
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.6
    • /
    • pp.755-762
    • /
    • 1990
  • The tungsten paste was printed on the surface of 92% alumina sheet which was made by type casting process. The printed tungsten was bonded on the Al2O3 by co-firing in reducing atmosphere. During the co-firing, the binder burn-out was easier in wet H2 atmosphere than in dry H2, which affected sintered density. In practically, the use of wet H2 above 100$0^{\circ}C$ was beneficial for density of alumina and bond strength. This phenomena occured more distinctly when atmosphere varied from dry H2 to wet H2 than varied dew point in wet H2. In wet H2, the improvement in bonding strength can be attributed to good glass migration into the metal layer due to inhibition of the tungsten particle growth, with increase of alumina density, at the temperatrue higher than 100$0^{\circ}C$.

  • PDF

Detection of Antiinflammatory Agents from Natural Products as Inhibitors of Cyclooxygenase I and II

  • Lee, Dong-Hee;Kang, Sam-Sik;Chang, Il-Moo;Mar, Woong-Chon
    • Natural Product Sciences
    • /
    • v.3 no.1
    • /
    • pp.19-28
    • /
    • 1997
  • Constitutive cyclooxygenase (COX-I) is present in cells under physiological conditions, whereas inducible cyclooxygenase (COX-II) is induced by some cytokines, mitogens, and endotoxin presumably in pathological conditions such as inflammation. We have evaluated the inhibitory effects of solvent fractionated extracts of natural products on the activities of COX-I and COX-II. Oxygen uptake COX assay was performed, as a primary screening from the tissue extracts of bovine seminal vesicles (BSV), by monitoring the initial rate of oxygen uptake using an oxygen electrode. Additionally, we evaluated plant extracts for the inhibitory effects of COX-I (in HEL cells) and COX-II (in lipopolysaccharide activated J774A.1 macrophages) using thin layer chromatography of prostanoids produced from $^{14}C-labelled$ arachidonic acid (AA). The use of such models of COX-I and COX-II assay will lead to the identification of specific inhibitors of cyclooxygenases with presumably less side effects than present therapies. Inhibitory effects of 50 kinds of plant extracts on the COX-I and COX-II activities were determined and the active fractions were found in the ethyl acetate fractions of Dryopteris crassirhizoma (roots), Amomum cardamomum (roots), Triticum aestivum (seeds), Perilla sikokiana (leaves), Anemarrhena asphodeloides (roots). Especially, the ethyl acetate fraction of Dryopteris crassirhizoma (roots), which exhibited the strong inhibition against BSV COX $(IC_{50},\;65.4\;{\mu}g/ml)$, COX-I $(IC_{50},\;8.5\;{\mu}g/ml)$, and COX-II $(IC_{50},\;17.2\;{\mu}g/ml)$, is under investigation to isolate active principles using activity-guided fractionation method.

  • PDF

Anti-oxidant and Anti-inflammation Activity of Fractions from Aster glehni Fr. Schm. (섬쑥부쟁이(Aster glehni Fr. Schm.) 분획물의 항산화 및 항염증 활성)

  • Kim, Han-Hyuk;Park, Gun-Hye;Park, Kang-Soo;Lee, Jin-Young;An, Bong-Jeun
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.434-441
    • /
    • 2010
  • The Plants and their extracts containing polyphenol have been shown to be associated with decreased the cause of aging and variety of disease such as reaction oxygen species (ROS) and reactive nitrogen species (RNS) in several recent studies. We conducted to investigate whether the extracts and fractionation isolated from Aster glehni Fr. Schm. has an inhibitory effect association with oxidation or inflammation. The Aster glehni Fr. Schm. 70% aq. MeOH was fractioned according to polarity with n-hexane layer, EtOAc layer, n-BuOH layer and water layer. The electron donating ability of EtOAc, n-BuOH solvent fraction from Aster glehni Fr. Schm. was about 58.0%, 46.4% at $50\;{\mu}g/mL$, respectively. The superoxide anion radical inhibitory effect of EtOAc extracts was about 64.65% at $50\;{\mu}g/mL$, and n-BuOH extracts was 35.66% at $50\;{\mu}g/mL$. EtOAc layer to the inhibition activity of hyaluronidase and lipoxygenase were inhibited about 24.37%, 29.5% at $5\;{\mu}g/mL$. In the anti-inflammation effect of EtOAc layer inhibited the generation of nitric oxide. also, these results showed that EtOAc extract inhibited 81.5% at $50\;{\mu}g/mL$ on the expressions of iNOS protein in Raw264.7 cell line.