• Title/Summary/Keyword: Oxygen heat treatment

Search Result 328, Processing Time 0.026 seconds

Neutrophil Chemotactic Activity in Bronchoalveolar Lavage Fluid of the Rats Exposed to Hyperoxia (고농도의 산소에 노출시킨 쥐의 기관지폐포세척액내 호중구 화학주성활성화도)

  • Song, Jeong Sup;Lee, Sook Young;Moon, Wha Sik;Park, Sung Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.4
    • /
    • pp.547-557
    • /
    • 1996
  • Background : An excessive accumulation of neutrophils in lung tissue has been known to play an important role in mediating the tissue injury among the adult respiratory distress syndrome, idiopathic pulmonary fibrosis and cystic fibrosis by releasing toxic oxygen radicals and proteolytic enzymes. Therefore, it is important to understand a possible mechanism of neutrophil accumulation in lung tissue. In many species, exposure to hyperoxic stimuli can cause changes of lung tissues very similar to human adult respiratory distress syndrome and neutrophils are also functioning as the main effector cells in hyperoxic lung injury. The purpose of the present study was to examine whether neutrophils function as a key effector cell and to study the nature of possible neutrophil chemotactic factors found in bronchoalveolar lavage fluid from the hyperoxia exposed rats. Methods : We exposed the rats to the more than 95% oxygen for 24, 48, 60 arid 72 hours and bronchoalveolar lavage(BAL) was performed. Neutrophil chemotactic activity was measured from the BAT- fluid of each experimental groups. We also evaluated the molecular weight of neutrophil chemotactic tractors using fast performance liquid chromatography and characterized the substances by dialyzer membrane and heat treatment. Results : 1) The neutrophil proportions in bronchoalveolar lavage fluid began to rise from 48 hours after oxygen exposure, and continued to be significantly increased with exposure times. 2) chemotactic index for neutrophils in lung lavages from rats exposed to hyperoxia was significantly higher in 48 hours group than in control group, and was significantly increased with exposure time. 3) No deaths occured until after 48 hours of exposure. However, mortality rates were increased to 33.3 % in 60 hours group and 81.3 % in 72 fours group. 4) Gel filtration using fast performance liquid chromatography disclosed two peaks of neutrophil chemotactic activity in molecular weight of 104,000 and 12,000 daltons. 5) Chemotactic indices of bronchoalveolar lavage fluid were significantly deceased when bronchoalveolar lavage fluid was treated with heat ($56^{\circ}C$ for 30 min or $100^{\circ}C$ for 10 min) or dialyzed (dialyzer membrane molecular weight cut off : 12,000 daltons). Conclusion : These results suggested that the generation of neutrophil chemotactic factor and subsequent neutrophil influx into the lungs are playing an important roles in hyperoxia-induced acute lung injury. Neutrophil chemotactic factor in the lung lavage fluids consisted of several distinct components having different molecular weight and different physical characteristics.

  • PDF

CO sensing Properties of $SnO_{2}$ fine particles ($SnO_{2}$ 초미세 입자의 CO 감지 특성)

  • Park, Jin-Seoung;Park, Bo-Seok;Noh, Whyo-Sub
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.55-61
    • /
    • 2002
  • Ultra-fine particles of $SnO_{2}$ was synthersized by the sol-gel powder processing using tin(II) chloride dihydrate$(SnCl_{2}{\cdot}2H_{2}O)$ and ethanol$(C_{2}H_{5}OH)$ as raw materials. Gel powders can be obtained by drying of sol at $120^{\circ}C$ after aging 72hrs and 168hrs. The amount of $SnO_{2}$ phase was increased with temperature because of the evaporation of volatile components, and the creation of $SnO_{2}$ phase was almost done by the heat treatment at $700^{\circ}C/30min$ The grain sizes after firing are about 20-30nm, and it showed the narrow distribution of grain size. The specimens to measure electrical properties were fabricated by the thick film screen printing technique on the alumina substrates. The conductance of $SnO_{2}$ was increased with temperature up to $380^{\circ}C$ by the typical conduction mechanism of semiconducting ceramics. There was a region of constant conductance between about $200^{\circ}C$ and $380^{\circ}C$ due to the increment of electron concentration with temperature and the annihilation of conduction carriers by the absorption and electron trapped-ionization of oxygen on the surface of $SnO_{2}$, It was finally showed the intrinsic behaviors above $450^{\circ}C$. The sensing properties of response time, recovery, and sensitivity of CO were improved with aging time.

  • PDF

A Study on the Preparation and Growth Mechanism of Titanium Dioxide using Organic-Inorganic Hybrid Titanium Complex (유무기 하이브리드 티타늄 착화합물을 이용한 티타니아의 제조 방법 및 성장 거동에 대한 연구)

  • Kang, Yubin;Choi, Jin-Ju;Kwon, Nam Hun;Kim, Dae-Guen;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.487-492
    • /
    • 2019
  • Titanium dioxide (TiO2) is a typical inorganic material that has an excellent photocatalytic property and a high refractive index. It is used in water/air purifiers, solar cells, white pigments, refractory materials, semiconductors, etc.; its demand is continuously increasing. In this study, anatase and rutile phase titanium dioxide is prepared using hydroxyl and carboxyl; the titanium complex and its mechanism are investigated. As a result of analyzing the phase transition characteristics by a heat treatment temperature using a titanium complex having a hydroxyl group and a carboxyl group, it is confirmed that the material properties were different from each other and that the anatase and rutile phase contents can be controlled. The titanium complexes prepared in this study show different characteristics from the titania-formation temperatures of the known anatase and rutile phases. It is inferred that this is due to the change of electrostatic adsorption behavior due to the complexing function of the oxygen sharing point, which crystals of the TiO6 structure share.

Study on the Influence of Cubic Liquid Crystalline Phases of Monoolein on the Stability and Transdermal Delivery of Retinylpalmitate (Monoolein액정상이 Retinylpalmitate의 안정성과 경피전달에 미치는 효과에 관한 연구)

  • Lee, Kyoung-Gum;Kang, Myung-Joo;Choi, Young-Wook;Lee, Jae-Hwi
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.4
    • /
    • pp.243-247
    • /
    • 2007
  • Retinoids have many important and diverse functions and particularly, have been widely used as anti-aging agent and for the treatment of acne and psoriasis in cosmetics. However, retinoids have low stability against the air, light, water, oxygen and heat, thus, to stabilize the retinoids in formulations is very critical procedure. In this study, cubic liquid crystalline phase of monoolein was applied to stabilize the retinylpalmitate (RP) and to enhance the transdermal permeation. Cubic liquid crystalline phase significantly enhanced the stability of RP. After 15 days, the content of RP in the cubic formulation was 94.7% while the content of RP in ethanol solution was below 0.5% at room temperature. Although BHT containing crystalline phase showed the slightly increased stability of RP, there were no significant differences in RP stability between with or without antioxidants (ascorbic acid, ${\alpha}$-tocopherol, BHT, BHA) at $40^{\circ}C$. The skin retention of RP in crystalline formulations was approximately $5.3{\sim}6.4$ times greater than that of o/w cream formulation. Incorporation of RP into cubic liquid crystalline phase of monoolein effectively stabilized the RP and worked as excellent topical vehicle for RP. Liquid crystalline phase is considered to be suitable formulation for RP for topical delivery system as a stabilizer and permeation enhancing agent.

Non-Benzoquinone Geldanamycin Analog, WK-88-1, Induces Apoptosis in Human Breast Cancer Cell Lines

  • Zhao, Yu-Ru;Li, Hong-Mei;Zhu, Meilin;Li, Jing;Ma, Tao;Huo, Qiang;Hong, Young-Soo;Wu, Cheng-Zhu
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.542-550
    • /
    • 2018
  • Heat shock protein 90 (Hsp90) is treated as a molecular therapeutic target for the prevention and treatment of cancer. Geldanamycin (GA) was the first identified natural Hsp90 inhibitor, but hepatotoxicity has limited its clinical application. Nevertheless, a new GA analog (WK-88-1) with the non-benzoquinone skeleton, obtained from genetically engineered Streptomyces hygroscopicus, was found to have anticancer activity against two human breast cancer cell lines. WK-88-1 produced concentration-dependent inhibition of cell proliferation, cell cycle arrest, and apoptosis in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 cell lines. Detailed analysis showed that WK-88-1 downregulated some key cell cycle molecules (CDK1 and cyclin B1) and lead to $G_2/M$ cell cycle arrest. Further studies also showed that WK-88-1 could induce human breast cancer cell apoptosis by downregulating Hsp90 client proteins (Akt, p-Akt, IKK, c-Raf, and Bcl-2), decreasing the ATP level, increasing reactive oxygen species production, and lowering the mitochondrial membrane potential. Meanwhile, we discovered that WK-88-1 significantly decreased the levels of Her-2 and $ER-{\alpha}$ in MCF-7 cells but not in MDA-MB-231 cells. In addition, WK-88-1 significantly increased caspase-3, -8, and -9 activities and the cleavage of PARP in a concentration-dependent manner (with the exception of caspase-3 and PARP in MCF-7 cells). Taken together, our preliminary results suggest that WK-88-1 has the potential to play a role in breast cancer therapy.

Peculiarities of ReBaCuO superconductor preparation

  • Fan, Zhanguo;Soh, Dea-Wha;Li, Ying-Mei;Park, Jung-Cheol;Korobova, N
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.913-916
    • /
    • 2001
  • From 1994 the cooperation between NEU of China and MJU of South Korea for study of ReBaCuO (Re=Rare earth elements) superconductors has been carried out. The progress has been got in following projects. Critical current density ($J_c$) of YBaCuO superconductor prepared by Melting Textured Growth (MTG) was improved. In the preparation of textured YBaCuO, 20 wt.% of YBaCuO 211 phase was added, which would be climactic for the microcracks in the textured YBaCuO. The effects of the 211 phase and Ag content on the superconductivity were studied and discussed in detail. The improved $J_c$ value was reached to 8$\times$10^4 A/cm^2 (77K,0T). Single phase $YbBa_{2}Cu_{3}O_{x}$ superconductor was sintered by the traditional powder metallurgical method, and its reaction process was studied. In recent years, NdBaCuO superconductor is being performed. The behavior of $Nd_{4}Ba_{2}Cu_{2}O_{10}$(Nd422 phase) and the solid solubility, x in the superconductor $Nd_{1+x}Ba_{2-x}Cu_{3}O_{y}$ by the heat treatment in the low oxygen partial pressure (1%) or Ar at $950{\circ}C$ were investigated. The zone-melting process was used to make oriented NdBaCuO superconductor in order to increase the critical current density.

  • PDF

Effects of Yttria and Calcia Co-Doping on the Electrical Conductivity of Zirconia Ceramics

  • Lee, Jong-Sook;Shin, Dong-Kyu;Choi, Byung-Yun;Jeon, Jung-Kwang;Jin, Sung-Hwan;Jung, Kwon-Hee;An, Pyung-An;Song, Sun-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.655-659
    • /
    • 2007
  • Zirconia polycrystals co-doped with x mol% CaO and (10-x) mol% $Y_2O_3$ were prepared by solid state reaction method. The compositions were chosen for nominally the same oxygen vacancy concentration of 5 mol%. X-ray diffraction patterns indicated the formation of cubic zirconia by heat treatment at $1600^{\circ}C$. Impedance spectroscopy was applied to deconvolute the bulk and grain boundary response. Electrical conductivity was measured using the complex impedance technique from 516 to 874 K in air. Maximum conductivity was exhibited by the composition with equal amounts of CaO and $Y_2O_3$, which may be ascribed to the smaller degree of defect-interactions in that composition due to the competition of different ordering schemes between the two systems. When compared to the composition containing $Y_2O_3$ only, co-doping of CaO increases the grain boundary resistance considerably. The activation energy of grain and grain boundary conductivity was 1.1 eV and 1.2 eV, respectively, with no appreciable dependence on dopant compositions.

Synthesis and Characterization of LSGM Solid Electrolyte for Solid Oxide Fuel Cell (연료전지용 LSGM 페로브스카이트계 전해질의 합성 및 특성 연구)

  • Seong, Young-Hoon;Jo, Seung-Hwan;Muralidharan, P.;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.696-702
    • /
    • 2007
  • The family of (Sr,Mg)-doped $LaGaO_3$ compounds, which exhibit high ionic conductivity at $600-800^{\circ}C$ over a wide range of oxygen partial pressure, appears to be promising as the electrolyte for intermediate temperature solid oxide fuel cells. Conventional synthesis routes of (Sr,Mg)-doped $LaGaO_3$ compounds based on solid state reaction have some problems such as the formation of impurity phases, long sintering time and Ga loss during high temperature sintering. Phase stability problem especially, the formation of additional phases at the grain boundary is detrimental to the electrical properties of the electrolyte. From this point of view, we focused to synthesize single phase (Sr,Mg)-doped $LaGaO_3$ electrolyte at the stage of powder synthesis and to apply relatively low heat-treatment temperature using novel synthesis route based on combustion method. The synthesized powder and sintered bulk electrolytes were characterized by XRD, TG-DTA, FT-IR and SEM. AC impedance spectroscopy was used to characterize the electrical transport properties of the electrolyte with the consideration of the contribution of the bulk lattice and grain boundary to the total conductivity. Finally, relationship between synthesis condition and electrical properties of the (Sr, Mg)-doped $LaGaO_3$ electrolytes was discussed with the consideration of phase analysis results.

Molecular and Genomic Approaches on Nickel Toxicity and Carcinogenicity

  • Seo, Young-Rok;Kim, Byung-Joo;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.2
    • /
    • pp.73-77
    • /
    • 2005
  • Nickel is the one of potent environmental, the occupational pollutants and the classified human carcinogens. It is a serious hazard to human health, when the metal exposure. To prevent human diseases from the heavy metals, it is seemingly important that understanding of how nickel exerts their toxicity and carcinogenic effect at a molecular and a genomic level. The process of nickel absorption has been demonstrated as phagocytosis, iron channel and diffusion. Uptaked nickel has been suggested to induce carcinogenesis via two pathways, a direct DNA damaging pathway and an indirect DNA damaging pathway. The former was originated from the ability of metal to generate Reactive Oxygen Species (ROS) and the reactive intermediates to interact with DNA directly. Ni-generated ROS or Nickel itself, interacts with DNAs and histones to cause DNA damage and chromosomal abnormality. The latter was originated from an indirect DNA damage via inhibition of DNA repair, or condensation and methylation of DNA. Cells have ability to protect from the genotoxic stresses by changing gene expression. Microarray analysis of the cells treated with nickel or nickel compounds, show the specific altered gene expression profile. For example, HIF-I (Hypoxia-Inducible Factor I) and p53 were well known as transcription factors, which are upregulated in response to stress and activated by both soluble and insoluble nickel compounds. The induction of these important transcription factors exert potent selective pressure and leading to cell transformation. Genes of metallothionein and family of heat shock proteins which have been known to play role in protection and damage control, were also induced by nickel treatment. These gene expressions may give us a clue to understand of the carcinogenesis mechanism of nickel. Further discussions on molecular and genomic, are need in order to understand the specific mechanism of nickel toxicity and carcinogenicity.

A Study on Comparison of the Quality Changes Powder Yam and Sliced Yams (분말 마와 절편 마의 품질변화 비교에 관한 연구)

  • Ko, Euisuk;Shim, Woncheol;Kim, Chanwoo;Lee, Hacrae;Jeon, Kyubae;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.22 no.2
    • /
    • pp.27-32
    • /
    • 2016
  • In this experiment, alcohol and blanching treatments were used for food packaging materials, quality of powder yam and sliced yams (5 mm size) were compared by alcohol concentration and time for measuring change of color, weight, moisture content saccharinity and decomposition. 5% and 10% alcohol were used to alcohol treatment for 5, 10 seconds each. Packaging materials were used OPP($30{\mu}m$), PET($25{\mu}m$), ON($25{\mu}m$) and all materials heat sealable were coated. Quality of powder yam were not changed during storage at low temperature however were changed during storage at room temperature after 5 days. In conclusion, powder yam were needed packaging materials with high water barrier property from moisture, sliced yams were high quality when packaged by ON and stored at low temperature. Therefore, using packaging materials with low oxygen permeability were expected to reduced quality degradation about browning of powder yam and sliced yams.