• Title/Summary/Keyword: Oxygen deprivation

Search Result 73, Processing Time 0.024 seconds

Neuroprotective effects of L-carnitine against oxygen-glucose deprivation in rat primary cortical neurons

  • Kim, Yu-Jin;Kim, Soo-Yoon;Sung, Dong-Kyung;Chang, Yun-Sil;Park, Won-Soon
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.7
    • /
    • pp.238-248
    • /
    • 2012
  • Purpose: Hypoxic-ischemic encephalopathy is an important cause of neonatal mortality, as this brain injury disrupts normal mitochondrial respiratory activity. Carnitine plays an essential role in mitochondrial fatty acid transport and modulates excess acyl coenzyme A levels. In this study, we investigated whether treatment of primary cultures of rat cortical neurons with L-carnitine was able to prevent neurotoxicity resulting from oxygen-glucose deprivation (OGD). Methods: Cortical neurons were prepared from Sprague-Dawley rat embryos. L-Carnitine was applied to cultures just prior to OGD and subsequent reoxygenation. The numbers of cells that stained with acridine orange (AO) and propidium iodide (PI) were counted, and lactate dehydrogenase (LDH) activity and reactive oxygen species (ROS) levels were measured. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the terminal uridine deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay were performed to evaluate the effect of L-carnitine (1 ${\mu}M$, 10 ${\mu}M$, and 100 ${\mu}M$) on OGD-induced neurotoxicity. Results: Treatment of primary cultures of rat cortical neurons with L-carnitine significantly reduced cell necrosis and prevented apoptosis after OGD. L-Carnitine application significantly reduced the number of cells that died, as assessed by the PI/AO ratio, and also reduced ROS release in the OGD groups treated with 10 ${\mu}M$ and 100 ${\mu}M$ of L-carnitine compared with the untreated OGD group (P<0.05). The application of L-carnitine at 100 ${\mu}M$ significantly decreased cytotoxicity, LDH release, and inhibited apoptosis compared to the untreated OGD group (P<0.05). Conclusion: L-Carnitine has neuroprotective benefits against OGD in rat primary cortical neurons in vitro.

Anthocyanin Extracts from Black Soybean (Glycine max L.) Protect Human Glial Cells Against Oxygen-Glucose Deprivation by Promoting Autophagy

  • Kim, Yong-Kwan;Yoon, Hye-Hyeon;Lee, Young-Dae;Youn, Dong-Ye;Ha, Tae-Joung;Kim, Ho-Shik;Lee, Jeong-Hwa
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.68-74
    • /
    • 2012
  • Anthocyanins have received growing attention as dietary antioxidants for the prevention of oxidative damage. Astrocytes, which are specialized glial cells, exert numerous essential, complex functions in both healthy and diseased central nervous system (CNS) through a process known as reactive astrogilosis. Therefore, the maintenance of glial cell viability may be important because of its role as a key modulator of neuropathological events. The aim of this study was to investigate the effect of anthocyanin on the survival of glial cells exposed to oxidative stress. Our results demonstrated that anthocyanin extracts from black soybean increased survival of U87 glioma cells in a dose dependent manner upon oxygen-glucose deprivation (OGD), accompanied by decrease levels of reactive oxygen species (ROS). While treatment cells with anthocyanin extracts or OGD stress individually activated autophagy induction, the effect was signifi cantly augmented by pretreatment cells with anthocyanin extracts prior to OGD. The contribution of autophagy induction to the protective effects of anthocyanin was verifi ed by the observation that silencing the Atg5 expression, an essential regulator of autophagy induction, reversed the cytoprotective effect of anthocyanin extracts against OGD stress. Treatment of U87 cells with rapamycin, an autophagy inducer, increased cell survival upon OGD stress comparable to anthocyanin, indicating that autophagy functions as a survival mechanism against oxidative stress-induced cytotoxicity in glial cells. Our results, therefore, provide a rationale for the use of anthocyanin as a preventive agent for brain dysfunction caused by oxidative damage, such as a stroke.

Reactive Oxygen Species-Induced Expression of B cell Activating Factor (BAFF) Is Independent of Toll-like Receptor 4 and Myeloid Differentiation Primary Response Gene 88

  • Kim, Hyun-Sun;Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.144-150
    • /
    • 2009
  • Reactive oxygen species play a role in signal transduction and in many human diseases. B-cell activating factor (BAFF) plays a role for mature B cell generation and maintenance and for the incidence of autoimmune diseases. We previously reported that BAFF expression was induced by ROS. In this study, we investigated whether ROS-induced BAFF expression was affected by toll-like receptor (TLR) 4 or myeloid differentiation primary response gene (MyD) 88. BAFF expression was increased by serum deprivation that is an experimental modification to produce ROS. In contrast, TLR4 and MyD88 were decreased by serum deprivation. Although ROS production was decreased in TLR4-nonfunctional or MyD88-deficient splenocytes as compared to that in control mice, serum deprivation increased ROS production and augmented BAFF expression in both cells. $50{\mu}M\;H_2O_2$ also increased BAFF expression in TLR4-deficient or MyD88-deficient splenocytes. Collectively, results show that BAFF expression may be mediated by TLR4 or MyD88-independent manner and TLR4 or MyD88 may not be required in BAFF expression.

Impaired Autophagic Flux in Glucose-Deprived Cells: An Outcome of Lysosomal Acidification Failure Exacerbated by Mitophagy Dysfunction

  • Eun Seong Hwang;Seon Beom Song
    • Molecules and Cells
    • /
    • v.46 no.11
    • /
    • pp.655-663
    • /
    • 2023
  • Autophagy dysfunction is associated with human diseases and conditions including neurodegenerative diseases, metabolic issues, and chronic infections. Additionally, the decline in autophagic activity contributes to tissue and organ dysfunction and aging-related diseases. Several factors, such as down-regulation of autophagy components and activators, oxidative damage, microinflammation, and impaired autophagy flux, are linked to autophagy decline. An autophagy flux impairment (AFI) has been implicated in neurological disorders and in certain other pathological conditions. Here, to enhance our understanding of AFI, we conducted a comprehensive literature review of findings derived from two well-studied cellular stress models: glucose deprivation and replicative senescence. Glucose deprivation is a condition in which cells heavily rely on oxidative phosphorylation for ATP generation. Autophagy is activated, but its flux is hindered at the autolysis step, primarily due to an impairment of lysosomal acidity. Cells undergoing replicative senescence also experience AFI, which is also known to be caused by lysosomal acidity failure. Both glucose deprivation and replicative senescence elevate levels of reactive oxygen species (ROS), affecting lysosomal acidification. Mitochondrial alterations play a crucial role in elevating ROS generation and reducing lysosomal acidity, highlighting their association with autophagy dysfunction and disease conditions. This paper delves into the underlying molecular and cellular pathways of AFI in glucose-deprived cells, providing insights into potential strategies for managing AFI that is driven by lysosomal acidity failure. Furthermore, the investigation on the roles of mitochondrial dysfunction sheds light on the potential effectiveness of modulating mitochondrial function to overcome AFI, offering new possibilities for therapeutic interventions.

Neuroprotective effect of extract of Angelicae tenuissimae on ischemic damage after oxygen and glucose deprivation(OGD) in rat organotypic hippocampal slice

  • Son , Dong-Wook;Lee, Jong-Seok;Lee, Pyeong-Jae;Kim, Jeong-Min;Kim, Yong-Sik;Kim, Ho-Cheol;Kim, Sun-Yeou
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.379.2-379.2
    • /
    • 2002
  • Angelicae tenuissimae ia a plant often used in traditional Korean medicine. It has been used as analgesic. antipyretic and anti-inflammatory agent. However its component and precise modes of neuropharmacological action have not been reported. In the present study, we investigated the protective effects of A. tenuissimae and it's component on ischemic damage induced by oxygen and glucose deprivation in rat hippocampal slice. (omitted)

  • PDF

Neuroprotective Effects of Daebowonjeon on PC12 Cells Exposed to Ischemia (허혈 상태의 PC12 세포에 대한 대보원전(大補元煎)의 신경보호효과)

  • Kim, Bong-Sang;Lee, Sun-Woo;Moon, Byung-Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.117-125
    • /
    • 2007
  • Neuronal ischemia is a pathological process caused by a lack of oxygen (anoxia) and glucose (hypoglycemia), resulting in neuronal death. It is believed that apoptosis is one of the mechanisms involved in ischemic cell death. Neuronal apoptosis is a process characterized by nuclear DNA fragmentation, changes of plasma membrane organization. To elucidate the mechanism of neuronal death following ischemic insult and to develop neuroprotective effects of Daebowonjeon(DBWJ) against ischemic damage, in vitro models are used. In vitro models of cell death have been devloped with pheochromocytoma (PC12) cell, which have become widely used as neuronal models of oxidative stress, trophic factor, serum deprivation and chemical hypoxia. Using a special ischemic device and PC12 cultures, we investigated an in vitro model of ischemia based on combined Oxygen and Glucose Deprivation (OGD) insult, followed by reoxygenation, mimicking the pathological conditions of ischemia. In this study, Daebowonjeon rescued PC12 cells from Oxygen-Glucose Deprivation (OGD)-induced cell death in a dose-dependent manner The nuclear staining of PC12 cells clearly showed that DBWJ attenuated nuclear condensation and fragmentation which represent typical neuronal apoptotic characteristics. DBWJ also prevents the LDH release and induction of Hypoxia Inducing Factor (HIF)-1 by OGD-exposed PC12 cells. Furthermore, DBWJ reduced the activation of polyADP-ribose polymerase (PARP) by OGO-exposed PC12 cells. These results suggest that apoptosis is an important characteristic of OGD-induced neuronal death and that oriental medicine, such as DBWJ, may prevent PC12 cell from OG D-induced neuronal death by inhibiting the apoptotic process.

Inhibition of $NF-{\kappa}B$ Activation Increases Oxygen-Glucose Deprivation-Induced Cerebral Endothelial Cell Death

  • Lee, Jin-U;Kim, Chul-Hoon;Shim, Kyu-Dae;Ahn, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.2
    • /
    • pp.65-71
    • /
    • 2003
  • Increasing evidences suggest that ischemia-induced vascular damage is an integral step in the cascade of the cellular and molecular events initiated by cerebral ischemia. In the present study, employing a mouse brain endothelioma-derived cell line, bEnd.3, and oxygen-glucose deprivation (OGD) as an in vitro stroke model, the role of nuclear factor kappa B (NF-${\kappa}B$) activation during ischemic injury was investigated. OGD was found to activate NF-${\kappa}B$ and to induce bEnd.3 cell death in a time-dependent manner. OGD phosphorylated neither 32 Ser nor 42 Tyr of $I{\kappa}B{\alpha}$. OGD did not change the amount of $I{\kappa}B{\alpha}$. The extents of OGD-induced cell death after 8 h, 10 h, 12 h and 14 h of OGD were 10%, 35%, 60% and 85%, respectively. Reperfusion following OGD did not cause additional cell death, indicating no reperfusion injury after ischemic insult in cerebral endothelial cells. Three known as NF-${\kappa}B$ inhibitors, including pyrrolidine dithiocarbamate (PDTC) plus zinc, aspirin and caffeic acid phenethyl ester (CAPE), inhibited OGD-induced NF-${\kappa}B$ activation and increased OGD-induced bEnd.3 cell death in a dose dependent manner. There were no changes in the protein levels of bcl-2, bax and p53 which are modulated by NF-${\kappa}B$ activity. These results suggest that NF-${\kappa}B$ activation might be a protective mechanism for OGD-induced cell death in bEnd.3.

The Neuroprotective Potential of Cyanidin-3-glucoside Fraction Extracted from Mulberry Following Oxygen-glucose Deprivation

  • Bhuiyan, Mohammad Iqbal Hossain;Kim, Hyun-Bok;Kim, Seong-Yun;Cho, Kyung-Ok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.353-361
    • /
    • 2011
  • In this study, cyanidin-3-glucoside (C3G) fraction extracted from the mulberry fruit (Morus alba L.) was investigated for its neuroprotective effects against oxygen-glucose deprivation (OGD) and glutamate-induced cell death in rat primary cortical neurons. Cell membrane damage and mitochondrial function were assessed by LDH release and MTT reduction assays, respectively. A time-course study of OGD-induced cell death of primary cortical neurons at 7 days in vitro (DIV) indicated that neuronal death was OGD duration-dependent. It was also demonstrated that OGD for 3.5 h resulted in approximately 50% cell death, as determined by the LDH release assay. Treatments with mulberry C3G fraction prevented membrane damage and preserved the mitochondrial function of the primary cortical neurons exposed to OGD for 3.5 h in a concentration-dependent manner. Glutamate-induced cell death was more pronounced in DIV-9 and DIV-11 cells than that in DIV-7 neurons, and an application of $50{\mu}M$ glutamate was shown to induce approximately 40% cell death in DIV-9 neurons. Interestingly, treatment with mulberry C3G fraction did not provide a protective effect against glutamate-induced cell death in primary cortical neurons. On the other hand, treatment with mulberry C3G fraction maintained the mitochondrial membrane potential (MMP) in primary cortical neurons exposed to OGD as assessed by the intensity of rhodamine-123 fluorescence. These results therefore suggest that the neuroprotective effects of mulberry C3G fraction are mediated by the maintenance of the MMP and mitochondrial function but not by attenuating glutamate-induced excitotoxicity in rat primary cortical neurons.

BMP-6 Attenuates Oxygen and Glucose Deprivation-Induced Apoptosis in Human Neural Stem Cells through Inhibiting p38 MAPK Signaling Pathway

  • Li Wang;Yang Chen;Lin Wei;Jing He
    • International Journal of Stem Cells
    • /
    • v.15 no.2
    • /
    • pp.144-154
    • /
    • 2022
  • Background and Objectives: Neural stem cells (NSCs) remain in the mammalian brain throughout life and provide a novel therapeutic strategy for central nervous system (CNS) injury. Bone morphogenetic protein-6 (BMP-6) had shown a protective effect in different types of cells. However, the role of BMP-6 in NSCs is largely unclear. The present study was aimed to investigate whether BMP-6 could protect human NSCs (hNSCs) against the oxygen and glucose deprivation (OGD)-induced cell death. Methods and Results: Upon challenge with OGD treatment, cell viability was significantly decreased in a time-dependent manner, as indicated by the CCK-8 assay. BMP-6 could attenuate the OGD-induced cell injury in a dose-dependent manner and decrease the number of TUNEL-positive cells. Moreover, BMP-6 markedly weakened the OGD-induced alterations in the expression of procaspase-8/9/3 and reversed the expression of cleaved-caspase-3. Interestingly, noggin protein (the BMP-6 inhibitor) attenuated the neuroprotective effect of BMP-6 in cultured hNSCs. Furthermore, the p38 MAPK signaling pathway was activated by OGD treatment and BMP-6 markedly inhibited the phosphorylation of p38 in a concentration-dependent manner. Pretreatment with noggin abolished the effect of BMP-6 on p38 activation. SB239063, a selective p38 inhibitor, exerted similar effects with BMP-6 in protecting hNSCs against the OGD-induced apoptosis. These results indicated that blocking the phosphorylation of p38 might contribute to the neuroprotective effect of BMP-6 against the OGD-induced injury in hNSCs. Conclusions: These findings suggested that BMP-6 might be a therapeutic target in the OGD-induced cell death, which provides a novel therapeutic strategy for enhancing host and graft NSCs survival in hypoxic-ischemic brain injury.

Glucose/Oxygen Deprivation Induces Release of $[^3H]5-hydroxytryptamine$ Associated with Synapsin 1 Expression in Rat Hippocampal Slices

  • Park, Eun-Mi;Chu, Sang-Hui;Lee, Kyung-Eun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.5
    • /
    • pp.347-353
    • /
    • 2000
  • It has been well documented that a massive release of not only glutamate but also other neurotransmitters may modulate the final responses of nerve cells to the ischemic neuronal injury. But there is no information regarding whether the release of monoamines is directly associated with synaptic vesicular proteins under ischemia. In the present study, it was investigated whether synapsin 1, syntaxin and SNAP-25 are involved in the release of 5-hydroxytryptamine $([^3H]5-HT)$ in glucose/oxygen deprived (GOD) rat hippocampal slices. And, the effect of NMDA receptor using DL-2-amino-5-phosphonovaleric acid (APV) on ischemia- induced release of 5-HT and the changes of the above proteins were also investigated. GOD for 20 minutes enhanced release of $[^3H]5-HT,$ which was in part blocked by the NMDA receptor antagonist, APV. The augmented expression of synapsin 1 during GOD for 20 minutes, which was also in part prevented by APV. In contrast, the expression of syntaxin and SNAP-25 were not altered during GOD. These results suggest that ischemic insult induces release of $[^3H]5-HT$ associated with synapsin 1, synaptic vesicular protein, via activation of NMDA receptor in part.

  • PDF