• Title/Summary/Keyword: Oxygen capacity

Search Result 683, Processing Time 0.024 seconds

Adsorption Characteristics of Benzene and MEK on Surface Oxidation Treated Adsorbent -Surface Oxidation by HNO3, H2SO4 and (NH4)2S2O8- (표면산화 처리된 흡착제의 Benzene 및 MEK 흡착 특성 - HNO3, H2SO4 및 (NH4)2S2O8에 의한 표면산화-)

  • Shim, Choon-Hee;Lee, Woo-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 2006
  • The objective of this research is to improve the adsorption capacity of adsorbent made from MSWI (Municipal Solid Waste Incinerator) fly ash by surface oxidation. Used oxidation agents were $HNO_{3}$, $H_{2}SO_{4}$ and $(NH_{4})_{2}S_{2}O_{8}$. These agents can modify the surface property of an adsorbent such as specific surface area, pore volume, and functional group. The surface structure was studied by BET method with $N_{2}$ adsorption. The acid value and base value were determined by Boehm's method. The adsorption properties were investigated with benzene and MEK (Methylethylketone). According to the results, the specific surface area of the adsorbent was increased from 309.2 $m^{2}$/g to 553.2 $m^{2}$/g by $HNO_{3}$ oxidation. But $H_{2}SO_{4}$ and $(NH_{4})_{2}S_{2}O_{8}$ oxidation was decreased slightly. After Oxidation, surface acid value increased, but base value decreased. FAA-N shows the highest acid value. The content of oxygen increased greatly and oxygen group was created on the adsorbent surface. The surface oxidation improved the adsorbing capacity for MEK. The amount of adsorbing MEK was increased from 189 $m^{2}$/g to 639 $m^{2}$/g by $HNO_{3}$ oxidation.

Optimization of Co-precipitated $CeO_2-ZrO_2$ Supports for Water-Gas Shift Reaction to Produce High Purity Hydrogen (고순도 수소 생산을 위한 WGS 반응용 $CeO_2-ZrO_2$ 담체 최적화)

  • Jeong, Dae-Woon;Eum, Ic-Hwan;Yoo, Byung-Chul;Koo, Kee-Young;Yoon, Wang-Lai;Roh, Hyun-Seog
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.757-760
    • /
    • 2009
  • 최근 들어 WGS 반응은 Pt과 같은 귀금속 촉매를 다양한 담체에 담지하여 낮은 온도에서 높은 활성을 지닌 촉매를 제조하기 위한 연구가 활발히 진행되고 있다. WGS 반응에서 귀금속 촉매가 높은 활성을 가지기 위해서 높은 산소저장능력(Oxygen Storage Capacity)과 산화환원능력(Redox)을 지닌 담체 개발이 필요하다. Ce-$ZrO_2$ 담체는 구조적으로 안정하며 높은 산소저장능을 가지고 있는 것으로 알려져 있다. Ce-$ZrO_2$ 구조는 Ce/Zr 비에 따라 다양한 변화가 생긴다. Ce/Zr 비가 6/4, 8/2인 경우 입방구조(Cubic)를 가지며 2/8인 경우 정방입계(Tetragonal)구조를 가진다. 이것은 담체 특성의 변화를 의미한다. 따라서, WGS 반응용 최적 담체를 선정하기 위해 Ce/Zr 비를 제조변수로 하여 담체특성을 분석하였다. 제조된 모든 담체는 공침법(Co-precipitation)을 사용하여 제조하였으며 $500^{\circ}C$에서 6시간 소성하였다. 담체 특성분석은 BET, XRD를 이용하였다. 추가적으로 제조변수를 다양화하여 담체 제조를 마쳤으며 특성분석이 진행 중이다. 분석 결과 $Ce_{0.2}Zr_{0.8}O_2$ 담체가 가장 넓은 표면적을 가지고 있으며 Ce/Zr 비가 높아질수록 표면적이 감소하는 경향을 나타내었다. Ce-$ZrO_2$ 담체의 나노결정크기는 Ce/Zr 비가 작아질수록 결정크기가 감소하는 경향을 나타내었으며 $Ce_{0.2}Zr_{0.8}O_2$가 Ce-$ZrO_2$ 담체 중에서 가장 작은 결정크기를 나타내어 3nm 이하의 나노-담체가 제조되었음을 확인하였다.

  • PDF

A Study on Na effect of Pt-Na/Ce(1-x)Zr(x)O2 Catalyst Structure for WGS Reaction (WGS 반응에서 Pt-Na/Ce(1-x)Zr(x)O2 촉매의 구조에 따른 Na 영향에 대한 연구)

  • Shim, Jae-Oh;Jeong, Dae-Woon;Jang, Won-Jun;Roh, Hyun-Seog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.654-659
    • /
    • 2012
  • The interest in water gas shift (WGS) reaction has grown significantly, as a result of the recent advances in fuel cell technology and the need to develop small-scale fuel processors. Recently, researchers have tried to overcome the disadvantages of the commercial WGS catalysts. As a consequence, supported Pt catalysts have attracted a lot of researchers due to high activity and stability for WGS at low temperatures. In this study, $Pt-Na/Ce_{(1-x)}Zr_{(x)}O_2$ catalysts with various Ce/Zr ratio have been applied to WGS at a gas hourly space velocity (GHSV) of $45,515h^{-1}$. According to TPR patterns of $Pt-Na/Ce_{(1-x)}Zr_{(x)}O_2$ catalysts, the reducibility increases with decreasing the $ZrO_2$ content. As a result, Cubic structure $Pt-Na/Ce_{(1-x)}Zr_{(x)}O_2$ catalysts exhibited higher CO conversion than tetragonal structure $Pt-Na/Ce_{(1-x)}Zr_{(x)}O_2$ catalysts. Expecially, Pt-Na/$CeO_2$ exhibited the highest CO conversion as well as 100% selectivity to $CO_2$. Moreover, Pt-Na/$CeO_2$ catalyst showed relatively stable activity with time on stream. The high activity of cubic structure Pt-Na/$CeO_2$ catalyst was correlated to its higher oxygen storage capacity (OSC) of $CeO_2$ and easier reducibility of Pt/$CeO_2$.

Effect of sulfur on the cadmium transfer and ROS-scavenging capacity of rice (Oryza sativa L.) seedlings

  • Jung, Ha-il;Chae, Mi-Jin;Kong, Myung-Suk;Kang, Seong-Soo;Kim, Yoo-Hak
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.187-187
    • /
    • 2017
  • Cadmium (Cd) pollution is rapidly increasing in worldwide due to industrialization and urbanization. In addition to its negative effects on the environment, Cd pollution adversely affects human health. Rice (Oryza sativa L.) is an important agricultural crop worldwide, including South Korea, and studies have examined its ability to alleviate Cd uptake from the soil into plants. However, information about the relationship between sulfur (S) and antioxidants in rice seedlings is still limited with regard to Cd phytotoxicity. We therefore investigated the changes in reactive oxygen species (ROS) and antioxidants in rice (Oryza sativa L. 'Dongjin') seedlings exposed to toxic Cd, S treatment, or both. The exposure of rice seedlings to $30{\mu}M$ Cd inhibited plant growth; increased the contents of superoxide, hydrogen peroxide, and malondialdehyde (MDA); and induced Cd uptake by the roots, stems, and leaves. Application of S to Cd-stressed seedlings decreased Cd-induced oxidative stress by increasing the capacity of the glutathione (GSH)-ascorbate (AsA) cycle, promoted S assimilation by increasing cysteine, GSH, and AsA contents in treated plants, and decreased Cd transfer from the roots to the stems and leaves. In conclusion, S application of plants under Cd stress promoted Cys and GSH biosynthesis and GSH-AsA cycle activity, thereby lowering the rate of Cd transfer to plant shoots and promoting the scavenging of the ROS that resulted from Cd toxicity, thus alleviating the overall Cd toxicity. Therefore, these results provide insights into the role of S in regulating the tolerance, uptake, and translocation of Cd in rice seedlings. The results of this study indicate that S application should have potential as a tool for mitigating Cd-stress in cereal crops, especially rice.

  • PDF

Study on the improvement in Cv of a Main Oxidizer shut-off Valve (CC 산화제 개폐밸브 유량계수 향상에 관한 연구)

  • Hong, Moon-Geun
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.140-148
    • /
    • 2009
  • MOV(Main Oxidizer shut-off Valves) control the combustion of launch vehicle systems by the supply and the isolation of liquid oxygen to a main combustion chamber in launch vehicle systems. Moreover, in the steady operational state, the MOV should secure a constant flow rate of liquid oxygen for combustion instability in the combustion chamber. Concerning the development of MOV, TM(Technology Model) has been manufactured and normal operations of the valve have been verified. However, the Cv of TM has been proved to be too low as compared with a design specification value. Therefore, CFD analysis have been performed by modification of the configurations of TM in order to increase sufficiently Cv of EM(Engineering Model), which is the following model of TM. The modifications of TM configurations such as partial scale-up of valve, increase of stroke length, and outlet angle of 120o would result in a considerable augmentation of Cv. It has been verified by flow capacity tests that the improved Cv of EM is min. 212, which is higher than Cv of TM, 161 by about 32%.

  • PDF

Antioxidative Activities of Wen-pi-tang-Hab-Wu-ling-san (WHW$^{(R)}$) in vitro (가감온비탕합오산(加減溫脾湯合五散) 완제(完製)(HWW$^{(R)}$)의 항산화 효과에 대한 연구)

  • Jung, Jin-Ki;Park, Yong-Ki
    • The Journal of Korean Medicine
    • /
    • v.30 no.5
    • /
    • pp.146-156
    • /
    • 2009
  • Objectives: The objective of this study was to investigate the antioxidant effects of manufactured Wen-pi-tang-Hab-Wu-ling-san (WHW$^{(R)}$) in vitro. Methods: WHW$^{(R)}$ was prepared by the pilot manufacture of WHW water extract from a GMP system appointed company. Antioxidative activities were determined by in vitro tests as follows: the scavenging activities of oxygen free radicals including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, superoxide anion, hydrogen peroxide and nitric oxide radicals, as well as ferrous ion chelating capacity and Trolox equivalent antioxidant capacity (TEAC). Results: WHW$^{(R)}$ significantly scavenged oxygen free radicals such as DPPH (IC$_{50}$=115.28 $\pm$ 0.25 $\mu$g/$m\ell$), superoxide anion (IC$_{50}$=8.56 $\pm$ 0.08 $\mu$g/$m\ell$), hydrogen peroxide (IC$_{50}$=240.36 $\pm$ 3.41 $\mu$g/$m\ell$) and nitric oxide (IC$_{50}$=162.28 $\pm$ 0.21 $\mu$g/$m\ell$) radicals. WHW$^{(R)}$ also showed ferrous ion chelating activity (IC$_{50}$=543.19 $\pm$ 4.85 $\mu$g/$m\ell$) and Trolox equivalent effects (IC$_{50}$=45.311 $\mu$g/$m\ell$) in TEAC and ORAC assay, respectively. Conclusion: This study demonstrates that WHW$^{(R)}$ has strong antioxidative properties through free radical scavenging activity. These data suggest that WHW$^{(R)}$ be used as an antioxidant agent.

  • PDF

Antioxidant Activities of Burdock Root (Arctium lappa L.) with Various Heat Treatment Conditions (다양한 열처리 조건에 따른 우엉뿌리의 항산화 활성)

  • Park, Mi-Young;Park, Ye-Oak;Park, Young-Hyun
    • Journal of the Korean Society of Food Culture
    • /
    • v.33 no.1
    • /
    • pp.78-85
    • /
    • 2018
  • This study examined the changes in antioxidant activity and contents of phenolic compounds inblanched, steamed, and autoclaved burdock root (BR). The total polyphenolic and flavonoids contents of raw and cooked BR were determined spectrophotometrically. The antioxidant activity of BR was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and oxygen radical absorbance capacity (ORAC) assays. The main phenolic compounds in BR were quantified by HPLC (high performance liquid chromatography). Both blanching and steaming treatments significantly increased the antioxidant activities of BR in all groups (5 min, 15 min, and 30 min), whereas in autoclaving treatment, the 30 min treatment only showed an increase in the antioxidant activities of BR. The 30 min blanched BR exhibited the strongest DPPH and ABTS radical scavenging activities and possessed the highest total polyphenol and flavonoid phenolic contents. The 15 min-steamed BR showed the highest ORAC value. The main phenolic compound of the 15 min-steamed BR was CGA (chlorogenic acid). These results suggest that heat cooking methods, such as blanching and steaming, improve the antioxidant activity of BR by increasing the concentration of phenolic compounds.

Effect of Ascorbate on the Arsenic Uptake, ROS-scavenging Capacity, and Antioxidant Homeostasis in Rice

  • Jung, Ha-il;Kong, Myung-Suk;Chae, Mi-Jin;Lee, Eun-Jin;Jung, Goo-Bok;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.2
    • /
    • pp.90-100
    • /
    • 2018
  • Environmental pollution with arsenic (As) in croplands causes agricultural and health problems worldwide. Rice is an important crop in South Korea, and many studies have evaluated the relationship between As and glutathione (GSH) to alleviate As uptake from the soil into plants. However, information about the relationship between As and ascorbate (AsA) in rice seedlings is still limited with regard to As phytotoxicity. We therefore investigated changes in reactive oxygen species (ROS) and antioxidant levels in rice (Oryza sativa L. cv 'Dasan') seedlings with toxic As and/or AsA application. The exposure of rice seedlings to $15{\mu}M$ As inhibited plant growth and resulted in increased contents of superoxide, hydrogen peroxide, and malondialdehyde, and induced As uptake by the roots and leaves. Application of AsA to As-exposed seedlings ameliorated As-induced oxidative stress by enhancing the capacity of AsA-GSH cycle in applied plants and increasing As transfer from the roots to leaves. These results suggest that AsA application alleviated As-induced oxidative damage by maintaining sufficient levels of AsA and GSH.

Antioxidant Activity of Onion (Allium cepa L.) Peel Extracts Obtained as Onion Byproducts (산업체 적용을 위한 양파껍질 추출물의 항산화활성)

  • Joung, Eun Mi;Jung, Kwang Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.364-368
    • /
    • 2014
  • This study investigated the antioxidant activity of onion peels extracted from onion byproducts by hot water treatment. Hot water extraction of freeze dried onion peel powder was analyzed for total polyphenol content, 2,2'-diphenyl-1-picryllhydrazyl (DPPH), and 2,2'-azino-bis(3-ehtylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activities, reducing power, oxygen radical absorbance capacity (ORAC). Total polyphenol content was the highest (233.90 mg/g) in onion peel extract mix with ethanol (OPME-1). The DPPH radical scavenging activity ($IC_{50}$), reducing power, and ORAC obtainbed from onion peel extract mix with ethanol precipitation (OPMPE-1) were the highest at 1.15 mg/mL, 1.69 $A_{700}$, and $318,509{\mu}M\;TE/mL$, respectively. The ABTS radical scavenging activity was the highest at 432.78 mg amino acids (AA) eq/g in the OPM. The results of this study suggest that onion peel extracts have marked antioxidant activity, which can have significant health benefits.

An Optimization of Synthesis Method for High-temperature Water-gas Shift Reaction over Cu-CeO2-MgO Catalyst (고온수성가스전이반응 적용을 위한 Cu-CeO2-MgO 촉매의 제조방법 최적화)

  • I-Jeong Jeon;Chang-Hyeon Kim;Jae-Oh Shim
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.321-326
    • /
    • 2023
  • Recently, there has been a growing interest in clean hydrogen energy that does not emit carbon dioxide during combustion due to the increasing focus on carbon neutral. Research related to hydrogen production continues, and in this study, we applied waste-derived synthesis gas to the water-gas shift reaction to simultaneously treat waste and produce high-purity hydrogen. To enhance catalytic activity in the high-temperature water-gas shift (HT-WGS) reaction, magnesium was used as a support material alongside cerium. Cu-CeO2-MgO catalysts were synthesized, with copper acting as the active component for the HT-WGS reaction. A study on the catalytic activity based on the preparation method was conducted, and the Cu-CeO2-MgO catalyst prepared by impregnation method exhibited the highest activity in the HT-WGS reaction. The observed superior performance of the Cu-CeO2-MgO catalyst prepared through the impregnation method can be attributed to its significantly higher oxygen storage capacity and amount of active Cu species.