References
- Ainsworth EA, Gillespie KM. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc., 2(4):875-877 https://doi.org/10.1038/nprot.2007.102
- Beckman KB, Ames BN. 1998. The free radical theory of aging matures. Physiol. Rev., 78(2):547-581. https://doi.org/10.1152/physrev.1998.78.2.547
- Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature, 181:1199-1200 https://doi.org/10.1038/1811199a0
- Braca A, De Tommasi N, Di Bari L, Pizza C, Politi M, Morelli I. 2001. Antioxidant principles from Bauhinia tarapotensis. J. Nat. Prod., 64(7):892-895 https://doi.org/10.1021/np0100845
- Chen FA, Wu AB, Chen CY. 2004. The influence of different treatments on the free radical scavenging activity of burdock and variations of its active components. Food Chemistry, 86(4): 479-484 https://doi.org/10.1016/j.foodchem.2003.09.020
- Dasgupta N, De B. 2007. Antioxidant activity of some leafy vegetables of India: A comparative study. Food Chemistry, 101(2):471-474 https://doi.org/10.1016/j.foodchem.2006.02.003
- Duh PD. 1998. Antioxidant activity of burdock (Arctium lappa Linne): Its scavenging effect on free-radical and active oxygen. JAOCS (Journal of the American oil chemists' society), 75(4):455-164 https://doi.org/10.1007/s11746-998-0248-8
- Erdemoglu N, Turan NN, Akkol EK, Sener B, Abacioglu N. 2009. Estimation of anti-inflammatory, antinociceptive and antioxidant activities of Arctium minus (Hill) Bernh. ssp. minus. J. Ethnopharmacol.. 121(2):318-323 https://doi.org/10.1016/j.jep.2008.11.009
- Ferracane R, Graziani G, Gallo M, Fogliano V, Ritieni A. 2010. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. J. Pharm. and Biomed. Anal., 51(2):399-404 https://doi.org/10.1016/j.jpba.2009.03.018
- Gursoy N, Sihoglu-Tepe A, Tepe B. 2009. Determination of in vitro antioxidative and antimicrobial properties and total phenolic contents of Ziziphora clinopodioides, Cyclotrichium niveum, and Mentha longifolia ssp. typhoides var. typhoides. J. Med. Food, 12(3):684-689 https://doi.org/10.1089/jmf.2008.0102
- Han SJ, Koo SJ. 1993. Study on the chemical composition in bamboo shoot, lotus root and burdock-free sugar, fatty acid, amino acid and dietary fiber contents. Korean J. Soc. Food Sci., 9(2):82-87
- Im DY, Lee KI. 2014. Antioxdative Activity and Tyrosinase Inhibitory Activity of the Extract and Fractions from Arctium lappa Roots and Analysis of Phenolic compounds. Kor. J. Pharmacogn., 45(2):141-146
- Ito N, Fukushima S, Hagiwara A, Shibata M, Oriso T. 1983. Carcinogenicity of butylated hydroxyanisole in F344 rats. J. Natl. Cancer Inst., 70(2):343-352
- Kim MS, Lee YS, Sohn HY. 2014. Anti-thrombosis and antioxidative activity of the root of Arctium lappa L. Korean J. Food Preserv., 21(5):727-734 https://doi.org/10.11002/kjfp.2014.21.5.727
- Kim YJ, Kang SC, Namkoong S, Choung MG, Sohn EH. 2012. Anti-inflammatory Effects by Arctium lappa L. Root Extracts through the Regulation of ICAM-1 and Nitric Oxide. Korean J. Plant Res., 25(1):1-6 https://doi.org/10.7732/kjpr.2012.25.1.001
- Kwak HK, Blumberg JB, Chen CY, Milbury PE. 2006. Microplate-based oxygen radical absorbance capacity (ORAC) assay of hydrophilic and lipophilic compartments in plasma. Nutr. Sci., 9(1):48-54
- Lee D, Kim CY. 2017. Influence of roasting treatment on the antioxidant activities and color birdock root tea. Prev. Nutr. Food Sci., 22(1):21-29 https://doi.org/10.3746/pnf.2017.22.1.21
- Maruta Y, Kawabata J, Niki R. 1995. Antioxidative caffeolyquinic acid derivatives in the roots of burdock (Arcticum lappa L). J. Agric. Food Chem., 43(10):2592- 2592 https://doi.org/10.1021/jf00058a007
- Mustafa RA, Abdul Hamid A, Mohamed S, Bakar FA. 2010. Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants. J. Food Sci., 75(1):C28-35 https://doi.org/10.1111/j.1750-3841.2009.01401.x
- Ou B, Hampsch-Woodill M, Prior RL. 2001. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem., 49(10):4619-4626 https://doi.org/10.1021/jf010586o
- Park KY, Lee KI, Rhee SH. 1992. Inhibitory Effect of Green- Yellow Vegetables on the Mutagenicity in Salmonella Assay System and on the Growth of AZ-521 Human Gastric Cancer Cells. J. Korean Soc. of Food Nutr., 21(2):149-154
- Predes FS, Ruiz AL, Carvalho JE, Foglio MA, Dolder H. 2011. Antioxidative and in vitro antiproliferative activity of Arctium lappa root extracts. BMC Complement Altern. Med., 23(11):25-29
- Re R. Pellegrini N, Proteggente A, Pannala A, Yang M, Rice- Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26(9-10):1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
- Saleem A, Walshe-Roussel B, Harris C, Asim M, Tamayo C, Sit S, Arnason JT. 2009. Characterisation of phenolics in Flor-Essence--a compound herbal product and its contributing herbs. Phytochem. Anal., 20(5):395-401 https://doi.org/10.1002/pca.1139
- Takebayashi J, Ishii R, Chen J, Matsumoto T, Ishimi Y, Tai A. 2010. Reassessment of antioxidant activity of arbutin: Multifaceted evaluation using five antioxidant assay systems. Informa. Healthcare Free Radical Research, 44(4):473-478 https://doi.org/10.3109/10715761003610760
- Tezuka Y, Yamamoto K, Awale S, Lia F, Yomoda S, Kadota S. 2013. Anti-austeric activity of phenolic constituents of seeds of Arctium lappa. Nat. Prod. Commun., 8(4):463- 466
- Verckei A, Toncsev H, Feher J, Hajdu E. 1992. Relationship between the extent of coronary artery disease and indicators of free radical activity. Clin. Cardiol., 15(9):706-707 https://doi.org/10.1002/clc.4960150920
- Yamagichi T, Mizobuchi T, Kajikawa R, Kawashima H, Miyabe F, Terao J, Takamura H, Matoba T. 2001. Radicalscavenging activity of vegetables and the effect of cooking on their activity. Food Sci. Technol., 7(3):250- 257
- Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effect on superoxide radicals. Food Chem. 64(4):555-559 https://doi.org/10.1016/S0308-8146(98)00102-2