• Title/Summary/Keyword: Oxygen addition

Search Result 2,037, Processing Time 0.03 seconds

The Analysis of the Micro-structure of Oxygen Plasma Treated PET Using a Nitrogen Porosimeter (Nitrogen Porosimeter를 이용한 산소 플라즈마 처리 PET의 미세구조 분석)

  • 김병인;김태경;조규민;임용진
    • Textile Coloration and Finishing
    • /
    • v.11 no.6
    • /
    • pp.1-6
    • /
    • 1999
  • The porosities of PET fibers were investigated using a nitrogen porosimeter according to oxygen plasma treatment and dyeing with a disperse dye, and they were discussed in terms of the change of internal micro-structure of the PET fiber. The total pore volume, surface area and average pore size of the plasma treated PET fibers increased expectably compared with the untreated sample. The PET fibers treated with oxygen plasma and then dyed with a disperse dye were increased significantly in the surface area and the total pore volume comparing with those of plasma treated only, but decreased in the average pore size. The increase of the surface area, after dyeing, of the plasma treated PET fibers was due to addition of the surface area of the dye itself to that of the PET fiber. The increase of the total pore volume of the plasma treated PET fibers by dyeing, which is the opposite result to the general idea that the pore volume of fibers would be reduced by occupation of dye molecules in the pores, could be explained by the free-volume model. This is that the amorphous region in the fiber expanded by occupation of dye molecules, and the marginal space surrounding dyes was generated as many smaller pores, and the decrease of the average pore size of the dyed sample also could be explained The decrease of the average pore size was caused by the splitting of a larger pore into smaller pores.

  • PDF

Effect of Dissolved Oxygen (DO) on Internal Corrosion of Water Pipes

  • Jung, Hae-Ryong;Kim, Un-Ji;Seo, Gyu-Tae;Lee, Hyun-Dong;Lee, Chun-Sik
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.195-199
    • /
    • 2009
  • A series of laboratory-scale corrosion experiments was carried out to observe the effect of dissolved oxygen (DO) in the presence of other water quality parameters, such as hardness, Cl-, and pH using various pipe materials. In addition, a simulated loop system was installed at a water treatment plant for pilot-scale experiment. Laboratory-scale experiment showed that corrosion rates for galvanized steel pipe (GSP), carbon steel pipe (CSP), and ductile cast iron pipe (DCIP) were decreased to 72%, 75%, and 91% by reducing DO concentration from 9${\pm}$0.5 mg/L to 2${\pm}$0.5 mg/L. From the pilot scale experiment, it was further identified that the average ionization rate of zinc in GSP decreased from 0.00533 to 0.00078 mg/$cm^2$/d by controlling the concentration of DO. The reduction of average ionization rate for copper pipe (CP) and stainless steel pipe (SSP) were 71.4% for Cu and 63.5% for Fe, respectively. From this study, it was concluded that DO could be used as a major parameter in controlling the corrosion of water pipes.

Role of Calmodulin in the Generation of Reactive Oxygen Species and Apoptosis Induced by Tamoxifen in HepG2 Human Hepatoma Cells

  • Lee, Yong-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.4
    • /
    • pp.187-191
    • /
    • 2002
  • Tamoxifen, an antiestrogen, has previously been shown to induce apoptosis in HepG2 human hepatoblastoma cells through activation of the pathways independent of estrogen receptors, i.e., intracellular $Ca^{2+}$ increase and generation of reactive oxygen species (ROS). However, the mechanism of tamoxifen to link increased intracellular $Ca^{2+}$ to ROS generation is currently unknown. Thus, in this study we investigated the possible involvement of calmodulin, a $Ca^{2+}$ activated protein, and $Ca^{2+}$/calmodulin-dependent protein kinase II in the above tamoxifen-induced events. Treatment with calmodulin antagonists (calmidazolium and trifluoroperazine) or specific inhibitors of $Ca^{2+}$/calmodulin-dependent protein kinase II (KN-93 and KN-62) inhibited the tamoxifen-induced apoptosis in a dose-dependent manner. In addition, these agents blocked the tamoxifen-induced ROS generation in a concentration-dependent fashion, which was completely suppressed by intracellular $Ca^{2+}$ chelation. These results demonstrate for the first time that, despite of its well-known direct calmodulin-inhibitory activity, tamoxifen may generate ROS and induce apoptosis through indirect activation of calmodulin and $Ca^{2+}$/calmodulin-dependent protein kinase II in HepG2 cells.

Isolation of a Hypoxia/Reoxygenation Regulatory Factor in Rat Astrocytes (흰쥐 성상세포에서 산소농도의존성 유전자의 분리)

  • Park Jeong-Ae;Song Hyun-Seok;Lee Hye-Shin;Kim Kyu-Won
    • YAKHAK HOEJI
    • /
    • v.50 no.2
    • /
    • pp.124-128
    • /
    • 2006
  • Astrocyte has emerged as an active regulator of brain function, which connects between blood vessels and neurons as well as is a structural component of the blood-brain barrier, From its structural characteristics, astrocyte seems to sensitively respond to oxygen tension, and, in turn, generate diverse cellular cascades. Therefore, to reveal astrocytlc events by oxygen change, we screened genes whose expressions are upregulated under reoxygenation after hypoxic stress using cDNA representational difference analysis (RDA) technique. Meteorin that regulates glial differentiation was isolated from primary cultured rat astrocytes as a hypoxia/reoxygenation regulatory factor. We cloned rat version of Meteorin (rMe-teorin) and determined full-size sequences of rMeteorin. In addition, RT-PCR analysis revealed that Meteorin was increased under reoxygenation in astrocytes and highly expressed in the developing brain. Collectively, these results suggest that Meteorin may regulate astrocyte-mediated effects in response to the change of oxygen tension in the pathophysiological states.

Capsaicin-Induced Apoptosis and Reduced Release of Reactive Oxygen Species in MBT-2 Murine Bladder Tumor Cells

  • Lee, Ji-Seon;Chang, Jong-Sun;Lee, Ji-Youl;Kim, Jung-Ae
    • Archives of Pharmacal Research
    • /
    • v.27 no.11
    • /
    • pp.1147-1153
    • /
    • 2004
  • Bladder cancer is a common cancer with high risk of recurrence and mortality. Intravesicle chemotherapy after trans-urethral resection is required to prevent tumor recurrence and progression. It has been known that antioxidants enhance the antitumor effect of bacillus Calmette-Guerin (BCG), the most effective intravesical bladder cancer treatment. Capsaicin, the major pungent ingredient in genus Capsicum, has recently been tried as an intravesical drug for overactive bladder and it has also been shown to induce apoptotic cell death in many cancer cells. In this study, we investigated the apoptosis-inducing effect and alterations in the cellular redox state of capsaicin in MBT-2 murine bladder tumor cells. Capsaicin induced apoptotic MBT-2 cell death in a time- and dose-dependent manner. The capsaicin-induced apoptosis was blocked by the pretreatment with Z-VAD-fmk, a broad-range caspase inhibitor, or Ac-DEVD-CHO, a caspase-3 inhibitor. In addition to the caspase-3 activation, capsaicin also induced cytochrome c release and decrease in Bcl-2 protein expression with no changes in the level of Bax. Furthermore, capsaicin at the concentration of inducing apoptosis also markedly reduced the level of reactive oxygen species and lipid peroxidation, implying that capsaicin may enhance the antitumor effect of BCG in bladder cancer treatment. These results further suggest that capsaicin may be a valuable intravesical chemotherapeutic agent for bladder cancers.

Effect of Pluronic F-68 and Oxygen Vectors on Cell Growth of Angelica gigas Nakai in Fed-batch Culture

  • Jeon, Su-Hwan;Lee, Sang-Yun;Jo, Ji-Suk;Min, Byeong-Hyeok;Kim, Dong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.159-162
    • /
    • 2000
  • It has been commonly known that cell growth is inhibited by the lack of dissolved oxygen and mass transfer inhibition of nutrients at stationary phase in fed-batch culture. In this study, Pluronic F-68 and oxygen vectors were added in Angelica gigas Nakai suspension culture in order to enhance cell growth in fed-batch culture. It was observed that the addition of 6%(w/v) Pluronic F-68 promoted cell growth up to 6.1% compared to control and that the use of 4%(v/v) n-hexadecane markedly enhanced cell growth up to 11.4%.

  • PDF

The Effect of Oxygen and Carbon Dioxide Concentration on Soot Formation in Nonpremixed Flames Using Time Resolved LII Technique

  • Oh, Kwang-Chul;Shin, Hyun-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2068-2076
    • /
    • 2005
  • The influence of oxygen concentration and CO$_{2}$ as diluent in oxidizer side on soot characteristics was studied by Laser Induced Incandescence, Time Resolved LII and Transmission Electron Microscopy photography in non-premixed co flowing flames. Through the comparison of TEM photographs and the decay rate of LII signal, suitable two delay times of TIRE-LII method and signal sensitivity ($\Delta$S$_{TIRE-LII/) were determined. The effects of O$_{2}$ and CO$_{2}$ as diluent in oxidizer side on soot formation are investigated with these calibrated techniques. The O$_{2}$+CO$_{2}$, N$_{2}$, and [Ar+CO$_{2}$] mixture in co-flow were used to isolate CO2 effects systematically. The number concentration of primary particle and soot volume fraction abruptly decrease by the addition of CO$_{2}$ to the co-flow. This suppression is resulted from the short residence time in inception region because of the late nucleation and the decrease of surface growth distance by the low flame temperature due to the higher thermal capacity and the chemical change of CO$_{2}$ including thermal dissociation. As the oxygen concentration increases, the number concentration of soot particles at the inception region increases and thus this increase of nucleation enhances the growth of soot particle.

Effects of Hwagi-Jogyeong-Tang (HJT) on Human HaCaT keratinocyte and malignant melanoma cells (화기조경탕(化氣調經湯)이 피부 세포 재생 및 악성 흑색종 세포에 미치는 영향)

  • Go, Hong-gae;Park, Su-yeon;Kim, Jong-han;Choi, Jeong-hwa
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.20 no.3
    • /
    • pp.14-28
    • /
    • 2007
  • Objective : Hwagi-Jokyeong-Tang (化氣調經湯, HJT) was described in DongeuiBogam(東醫寶鑑). This remedy has been used to treat patients with Naryeok, which is similar as tuberculous cervical lymphadenitis in western medicine. Methods : In this study, the present author investigated the effects of HJT on on Human HaCaT keratinocyte and malignant melanoma cells such as SK-MEL-2 and B16F10 in terms of cell viabilities, proliferations, DPPH free radical scavenging activities, oxygen free radical productions and inhibitory action on elastase activities. Results : HJT acceleated proliferation of HaCaT keratinocytes dose-dependantly. HJT also prevented cell death of HaCaT induced by Hydrogen peroxide, which products oxygen free radicals. On the contrary, HJT did not affect proliferations of SK-MEL-2 or B16F10. In addition, HJT was shown to have DPPH free radical scavenging activities and also have inhibitory effects on elastase activities too. On the fluorescent examinations, the present author know that HJT did not affect production levels of oxygen free radicals in malignant melanoma cell, SK-MEL-2. Conclusions : These results suggest that HJT has possibilities of usage for functional cosmetics which have skin regeneration or prevention from skin tissue injury.

  • PDF

Inactivation of Photosystem I in Cucumber Leaves Exposed to Paraquat-Induced Oxidative Stress

  • Park, Sun-Mi;Suh, Key-Hong;Kim, Jae-sung;Park, Youn-Il
    • Journal of Photoscience
    • /
    • v.8 no.1
    • /
    • pp.13-17
    • /
    • 2001
  • Cucumber leaves subjected to light chilling stress exhibit a preferential inactivation of photosystem(PS) I relative to PSII, resulting in the photoinhibition of photosynthesis. In light chilled cucumber leaves, Cu/Zn-Superoxide dismutase(SOD) is regarded as a primary target of the light chilling stress and its inactivation is closely related to the increased production of reactive oxygen species. In the present study, we further explored that inactivation of PSI in cucumber leaves is not a light chilling specific, but general to various oxidative stresses. Oxidative stress in cucumber leaves was induced by treatment of methylviologen(MV), a producer of reactive oxygen species in chloroplasts. MV treatment decreased the maximal photosynthetic O$_2$ evolution, resulting in the photoinhibition of photosynthesis. The photoinhibition of photosynthesis was attributable to the decline in PSI functionality determined in vivo by monitoring absorption changes around 820 nm. In addition, MV treatment inactivated both antioxidant enzymes Cu-Zn-superoxide dismutase and ascorbate peroxidase known sensitive to reactive oxygen species. From these results, we suggest that chloroplast antioxidant enzymes are the primary targets of photooxidative stress, followed by subsequent inactivation of PSI.

  • PDF

The Role of Metal Catalyst on Water Permeation and Stability of BaCe0.8Y0.2O3-δ

  • Al, S.;Zhang, G.
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.212-219
    • /
    • 2018
  • Perovskite type ceramic membranes which exhibit dual ion conduction (proton and oxygen ion conduction) can permeate water and can aid solving operational problems such as temperature gradient and carbon deposition associated with a working solid oxide fuel cell. From this point of view, it is crucial to reveal water transport mechanism and especially the nature of the surface sites that is necessary for water incorporation and evolution. $BaCe_{0.8}Y_{0.2}O_{3-{\alpha}}$ (BCY20) was used as a model proton and oxygen ion conducting membrane in this work. Four different catalytically modified membrane configurations were used for the investigations and water flux was measured as a function of temperature. In addition, CO was introduced to the permeate side in order to test the stability of membrane against water and $CO/CO_2$ and post operation analysis of used membranes were carried out. The results revealed that water incorporation occurs on any exposed electrolyte surface. However, the magnitude of water permeation changes depending on which membrane surface is catalytically modified. The platinum increases the water flux on the feed side whilst it decreases the flux on the permeate side. Water flux measurements suggest that platinum can block water permeation on the permeate side by reducing the access to the lattice oxygen in the surface layer.