• Title/Summary/Keyword: Oxygen Reynolds Number

Search Result 13, Processing Time 0.015 seconds

Combustion Characteristics of a Gaseous Methane-Gaseous Oxygen Diffusion Flame Sprayed by a Shear Coaxial Injector (전단 동축형 인젝터를 통해 분사된 기체메탄-기체산소 확산화염의 연소특성)

  • Hong, Joon Yeol;Bae, Seong Hun;Kwon, Oh Chae;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.41-48
    • /
    • 2017
  • The combustion characteristics of gaseous methane-gaseous oxygen, an eco-friendly bipropellant injected by shear coaxial injector, were investigated. Flame was photographed under various combustion conditions using a DSLR camera, and the characteristics of the flame shape was quantified by image post-processing. From the view point of stabilization, the diffusion flame could be divided into anchored flame regime and blow-off regime. As the oxidizer Reynolds number ($Re_o$) increased, a probability of the formation of anchored flame increased with the length of flame. The shear coaxial injector used in this experiment was found to require a large length-to-diameter ratio of combustion chamber because it formed a relatively long flame in the injection direction due to a poor mixing depending only on the momentum diffusion of two propellant jets.

Whole Brain Radiation-Induced Cognitive Impairment: Pathophysiological Mechanisms and Therapeutic Targets

  • Lee, Yong-Woo;Cho, Hyung-Joon;Lee, Won-Hee;Sonntag, William E.
    • Biomolecules & Therapeutics
    • /
    • v.20 no.4
    • /
    • pp.357-370
    • /
    • 2012
  • Radiation therapy, the most commonly used for the treatment of brain tumors, has been shown to be of major significance in tumor control and survival rate of brain tumor patients. About 200,000 patients with brain tumor are treated with either partial large field or whole brain radiation every year in the United States. The use of radiation therapy for treatment of brain tumors, however, may lead to devastating functional deficits in brain several months to years after treatment. In particular, whole brain radiation therapy results in a significant reduction in learning and memory in brain tumor patients as long-term consequences of treatment. Although a number of in vitro and in vivo studies have demonstrated the pathogenesis of radiation-mediated brain injury, the cellular and molecular mechanisms by which radiation induces damage to normal tissue in brain remain largely unknown. Therefore, this review focuses on the pathophysiological mechanisms of whole brain radiation-induced cognitive impairment and the identification of novel therapeutic targets. Specifically, we review the current knowledge about the effects of whole brain radiation on pro-oxidative and pro-inflammatory pathways, matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) system and extracellular matrix (ECM), and physiological angiogenesis in brain. These studies may provide a foundation for defining a new cellular and molecular basis related to the etiology of cognitive impairment that occurs among patients in response to whole brain radiation therapy. It may also lead to new opportunities for therapeutic interventions for brain tumor patients who are undergoing whole brain radiation therapy.

Fundamental Experiment on the Flow Characteristics inside the Exhaust Duct of Cone Calorimeter (콘 칼로리미터의 배기 덕트 내부 유동 특성 기초 실험)

  • Shin, Yeon Je;You, Woo Jun
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.35-40
    • /
    • 2019
  • In this study, the mass flow rate of the heat release rate equation, which is the major factor of the oxygen consumption method, was analyzed for the fundamental investigation of the cone-calorimeter (5 m length and 0.3 m diameter). The shapes of a completely empty inside, 3 mm pore diameter mesh and pore diameter 10 mm honeycomb with 0.76 porosity were constructed using the cone-calorimeter. To calculate the mass flow rate, four bi-directional probes and thermocouples were installed in a uniform position in the vertical direction of flow. The velocity gradient and flow perturbation were measured from the increase in Reynolds number. As the flow capacity increased, the speed gradient increased in all three shapes relative to the turbulence intensity. In addition, the deviation of extended uncertainty to the mass flow was completely low in the order of empty space, mesh (dp = 3 mm) and honeycomb (dp = 10 mm and 𝜖 = 0.76) at the 95% confidence level. The results can be used in designs to improve the flow stability of the cone calorimeter.