• Title/Summary/Keyword: Oxygen Balance

Search Result 153, Processing Time 0.026 seconds

The Environmental Impacts of Seasonal Variation on Characteristics of Geochemical Parameters in Lake Shihwa, Korea (시화호의 계절변화에 따른 지화학적 환경요인 특성 연구)

  • Kim Tae-Ha;Park Yong-Chul;Lee Hyo-Jin;Kim Dong-Hwa;Park Jun-Kun;Kim Sung-Jun;Lee Mi-Yeon
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1089-1102
    • /
    • 2004
  • Seasonal variation of biogeochemical characteristics was determined in Lake Shihwa from October 2002 to August 2003. When the lake was artificially constructed for the freshwater reservoir in 1988, the development of the strong haline density stratification resulted in two-layered system in water column and hypoxic/anoxic environment prevailed in the bottom layer due to oxidation of accumulated organic matters in the lake. Recently, seawater flux to the lake through the sluice has been increased to improve water quality in the lake since 2000, but seasonal stratification and hypoxic bottom layer of the lake still developed in the summer due to the nature of artificially enclosed lake system. As the lake is still receiving tremendous amount of organic matters and other pollutants from neighboring streams during the rainy summer season, limited seawater flux sluicing into the lake may not be enough for the physical and biogeochemical mass balance especially in the summer. The excess of accumulated organic matters in the bottom layer apparently exhausted dissolved oxygen and affected biogeochemical distributions and processes of organic and inorganic compounds in the stratified two-layered environment in the summer. During the summer, ammonia and dissolved organic carbon remarkably increased in the bottom layer due to the hypoxic/anoxic condition in the bottom layer. Phosphate also increased as the result of benthic flux from the bottom sediment. Meanwhile, dissolved organic carbon showed the highest value at the upstream area and decreased along the salinity gradient in the lake. In addition to the sources from the upstream, autochthonous origin of particulate organic carbon from algal bloom in the lake might be more important for sustaining aggravated water quality and development of deteriorated bottom environment in the summer. The removal of trace metals could be attributed to scavenging by strong insoluble metal-sulfide compounds in the hypoxic/anoxic bottom layer in the summer.

Application of a Numerical Model for the Prediction of Vertical Profiles of Electron Acceptors Based on Degradation of Organic Matter in Benthic Sediments (퇴적 유기물 분해과정에 따른 물질 거동 변화 예측을 위한 수치모델 적용)

  • Choi, Jung-Hyun;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.151-157
    • /
    • 2005
  • A one-dimensional numerical model was developed to simulate vertical profiles of electron acceptors and their reduced species in benthic sediments. The model accounted for microbial degradation of organic matter and subsequent chemical reactions of interest using stoichiometric relationships. Depending on the dominant electron acceptors utilized by microorganisms, the benthic sediments were assumed to be vertically subdivided into six zones: (1) aerobic respiration, (2) denitrification, (3) manganese reduction, (4) iron reduction, (5) sulfate reduction, and (6) methanogenesis. The utilizations of electron acceptors in the biologically mediated oxidation of organic matter were represented by Monod-type expression. The mass balance equations formulated for the reactive transport of organic matter, electron acceptors, and their corresponding reduced species in the sediments were solved utilizing an iterative multistep numerical method. The ability of model to simulate a freshwater sediments system was tested by comparing simulation results against published data obtained from lake sediments. The simulation results reasonably agreed with field measurements for most species, except for ammonia. This result showed that the C/N ratio (106/16) in the sediments is lower than what the Redfield formula prescribes. Since accurate estimates of vertical profiles of electron acceptors and their reduced species are important to determine the mobility and bioavailability of trace metals in the sediments, the model has potential application to assess the stability of selected trace metals in the sediments.

Crystal Structures of Zeolite X Exchanged by Two Different Cations. Structures of Cd32Cs28-X and Cd28Rb36-X (X=Si100Al92O384)

  • Jeong, Gyoung-Hwa;Kim, Yang
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1121-1126
    • /
    • 2002
  • Two anhydrous crystal structures of fully dehydrated Cd2+ - and Cs+ -exchanged zeolite X, Cd32Cs28Si100Al92O384 (Cd32Cs28-X: a = 24.828(11) $\AA)$ and fully dehydrated Cd,sup>2+ - and Rb+ -exchanged zeolite X, Cd28Rb36Si100Al92O384 (Cd28Rb36-X: a = 24.794(2) $\AA$), have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at $21(1)^{\circ}C.$ The structures were refined to the final error indices, R1 = 0.058 and R2 = 0.065 with 637 reflections for Cd32Cs28-X and R1 = 0.086 and R2 = 0.113 with 521 reflections for Cd28Rb36-X for which I > $3\sigma(I)$. In the structure of Cd,sub>32Cs28-X, 16 Cd2+ ions fill the octahedral sites I at the centers of the double six rings (Cd-O = $2.358(8)\AA$ and O-Cd-O = $90.8(3)^{\circ}$ ). The remaining 16 Cd2+ ions occupy site II (Cd-O = $2.194(8)\AA$ and O-Cd-O = $119.7(4)^{\circ})$ and six Cs+ ions occupy site II opposite to the single six-rings in the supercage; each is $2.322\AA$ from the plane of three oxygens (Cs-O = 3.193(13) and O-Cs-O = $73.0(2)^{\circ}).$ Aboutten Cs+ ions are found at site II', $1.974\AA$ into the sodalite cavity from their three oxygen plane (Cs-O = $2.947(8)\AA$ and O-Cs-O = $80.2(3)^{\circ}).$ The remaining 12 Cs+ ions are distributed over site III' (Cs-O = 3.143(9) and O-Cs-O= $59.1(2)^{\circ})$. In the structure of Cd28Rb36-X, 16 Cd2+ ions fill the octahedral sites I at the center of the double-sixrings (Cd-O = 2.349(15) and O-Cd-O = $91.3(5)^{\circ}$ ). Another 12 Cd2+ ions occupy two different II sites (Cd-O = $2.171(18)/2.269(17)\AA$ and O-Cd-O = $119.7(7)/113.2(7)^{\circ}).$ Fifteen Rb+ ions occupy site II (Rb-O = $2.707(17)\AA$ and O-Rb-O = $87.8(5)^{\circ}).$ The remaining 21 Rb+ ions are distributed over site III' (Rb-O = $3.001(16)\AA$ and O-Rb-O = $60.7(4)^{\circ})$. It appears that the smaller and more highly charged Cd2+ ions prefer sites I and Ⅱ in that order, and the larger Rb+ and Cs+ ions, which are less able to balance the anionic charge of the zeolite framework, occupy sites II and II' with the remainder going to the least suitable site in the structure, site III'.The maximum Cs+ and Rb+ ion exchanges were 30% and 39%, respectively. Because these cations are too largeto enter the small cavities and their charge distributions may be unfavorable, cation-sieve effects might appear.

Antioxidant Enzyme Activity and Anti-Adipogenic Effects of (-)-Epigallocatechin-3-Gallate in 3T3-L1 Cells ((-)-Epigallocatechin-3-Gallate의 3T3-L1 세포에서 항산화 효소 활성 및 지방세포 분화 억제 효과)

  • Kim, Younghwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.11
    • /
    • pp.1293-1299
    • /
    • 2017
  • Obesity contributes to the development of diseases, such as type II diabetes, hypertension, coronary heart disease, and cancer. In addition, oxidative stress caused by reactive oxygen species (ROS) is recognized widely as a contributing factor in the development of chronic diseases. This study was examined the antioxidant and anti-adipogenic activities of epigallocatechin-3-gallate (EGCG) in 3T3-L1 preadipocytes. 3T3-L1 cells were differentiated with or without EGCG for 6 days. The production of glutathione (GSH) and the activities of the antioxidant enzymes, such as glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) were measured. EGCG inhibited significantly the lipid accumulation and the expression of adipogenic specific proteins including CCAAT/enhancer binding protein ${\alpha}$ and adipocyte fatty acid binding protein. The production of intracellular ROS was decreased significantly by EGCG in 3T3-L1 cells. EGCG increased the GSH production and the activities of GPx, GR, CAT, and SOD. Moreover, EGCG increased the protein expression of glutamate-cysteine ligase and heme oxygenase-1 in 3T3-L1 cells. These results suggest that EGCG increased the activity and expression of antioxidant enzymes and suppressed the lipid accumulation in 3T3-L1 cells. Therefore, the use of phytochemicals that can maintain the GSH redox balance in adipose tissue could be promising for reducing obesity.

Real-time Control of Biological Animal Wastewater Treatment Process and Stability of Control Parameters (생물학적 축산폐수 처리공정의 자동제어 방법 및 제어 인자의 안정성)

  • Kim, W.Y.;Jung, J.H.;Ra, C.S.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.251-260
    • /
    • 2004
  • The feasibility and stability of ORP, pH(mV) and DO as a real-time control parameter for SBR process were evaluated in this study. During operation, NBP(nitrogen break point) and NKP(nitrate knee point), which reveal the biological and chemical changes of pollutants, were clearly observed on ORP and pH(mV)-time profiles, and those control points were easily detected by tracking the moving slope changes(MSC). However, when balance of aeration rate to loading rate, or to OUR(oxygen uptake rate), was not optimally maintained, either false NBP was occurred on ORP and DO curves before the appearance of real NBP or specific NBP feature was disappeared on ORP curve. Under that condition, however, very distinct NBP was found on pH(mV)-time profile, and stable detection of that point was feasible by tracking MSC. These results might mean that pH(mV) is superior real-time control parameter for aerobic process than ORP and DO. Meanwhile, as a real-time control parameter for anoxic process, ORP was very stable and more useful parameter than others. Based on these results, a stable real-time control of process can be achieved by using the ORP and pH(mv) parameters in combination rather than using separately. A complete removal of pollutants could be always ensured with this real-time control technology, despite the variations of wastewater and operation condition, as well as an optimization of treatment time and capacity could be feasible.

Organic Matter and Nutrient Budget of Constructed Tidal Flat in Gapo Area of the Masan Bay, Korea (마산만 가포지역 인공갯벌의 유기물 및 영양염 수지)

  • 안순모;백봉주
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.411-419
    • /
    • 2003
  • Dredged material during Masan Bay cleaning in 1990-1994 was deposited in Gapo area. The site provides an ideal experimental condition to monitor environmental remediation and benthic ecosystem stabilization processes after the disturbance. Sea water samples were taken during one tidal cycle in one hour interval from Oct. 2001 to Apr. 2002 (4 times) to estimate the organic matter and nutrient fluxes in Gapo area. Hourly material fluxes were estimated from the water balance estimated from 3 dimensional topography of Gapo area and from material concentration. Net material fluxes were estimated from the difference between total influx and total outflux during one tidal cycle. Chemical oxygen demand showed net outflux in Nov. 2001, Dec. 2001 and Apr. 2002 (2.2∼3.9 g m$\^$-2/ h$\^$-1/) and showed net influx in Mar. 2002 (1.4 g m$\^$-2/ h$\^$-1/). Ammonium showed net outflux during the study (0.1∼118 mg m$\^$-2/ h$\^$-1/m-2h-I). According to this investigation, Gapo area was a source rather than a sink of organic matter. However, the variability of the material fluxes was high so that a long term study may be required.

Deep Sedation with Sevoflurane in Patients with Double Outlet of Right Ventricle (양대혈관 우심실 기시 환아의 Sevoflurane을 이용한 깊은 진정 하 치과치료)

  • Hyun, Hong-Keun;Shin, Teo Jeon;Kim, Young-Jae;Kim, Jung-Wook;Jang, Ki-Taeg;Lee, Sang-Hoon;Kim, Chong-Chul;Kim, Hyun-Jeong;Seo, Kwang-Suk;Lee, Jung-Man;Shin, Soonyoung
    • Journal of The Korean Dental Society of Anesthesiology
    • /
    • v.12 no.2
    • /
    • pp.115-119
    • /
    • 2012
  • Double outlet of right ventricle (DORV) refers to a congenital heart disease in which pulmonary and systemic circulation originates from the right ventricle. In the patient with DORV, it is important to maintain the balance between pulmonary and systemic circulation in anesthetic management. A 4-year-old boy with DORV, who underwent a Blalock-Taussig shunt operation, was transferred to the clinic with a chief complaint of multiple caries. Due to poor cooperability, it was impossible to treat the caries without sedation or general anesthesia. We planned to sedate him with consideration with detrimental effects associated with positive pressure ventilation for dental treatment. After a prophylactic administration of antibiotics, sevoflurane was administered through T-cannula site. Throughout the treatment, His blood remained stable around 80/40 mmHg, oxygen saturation remained around 91%. After 3 hour of sedation with sevoflurane (end-tidal sevoflurane con 1-1.8 vol%), he fully regained consciousness, and discharged from hospital without complications. In case of DORV patient, deep sedation with sevoflurane may be used as effective method of behavioral management during dental treatment.

Generation of calibration standard gases using capillary gas divider: uncertainty measurement and method validation (다중 모세관을 이용한 교정용 표준가스의 제조: 불확도와 유효성 평가)

  • Lee, Sangyun;Hwang, Eun-Jin;Jung, Hye-Ja;Lee, Kwang-Woo;Chun, Ki-Joon
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.369-375
    • /
    • 2006
  • Calibration gas mixtures were prepared using dynamic volumetric method according to ISO 6145-5 and the uncertainty was evaluated. Ten identical capillaries with 0.25 mm in inner diameter and 50 cm in length were applied in this system. Dilution ratio of parent gas was determined by the number of capillaries that passes parent gas and that passes balance gas through. Capillaries were made of Teflon which had good chemical stability against adsorption of gaseous substances. Mechanical valves were introduced in this system in order to minimize the thermal effect of solenoid valves. Concentration of prepared gases were compared with master grade standard gases in cylinders made by RiGAS Co. and calibration of the instrument were completed using comparison method according to ISO 6143. Experimental results showed that the coefficient of variance of diluted oxygen standard gases showed less then 0.2% in most dilution range, that of diluted hydrogen sulfide standard gases showed less then 1.0%. Therefore, it is proven that the standard gases prepared by this system are appropriate to be used as a calibration standards in ambient monitoring, etc.

Analysis and Safety Assessment of Antioxidants Migrated from Polyethylene and Polypropylene Food Packaging Materials into Food Simulants (폴리에틸렌 및 폴리프로필렌 기구·용기·포장 유래 산화방지제 분석 및 안전성평가)

  • Choi, Heeju;Choi, Jae Chun;Bae, In-Ae;Park, Se-Jong;Kim, MeeKyung
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.5
    • /
    • pp.424-433
    • /
    • 2017
  • Antioxidants are used in the manufacturing of commercial food packages made of polyolefin plastic such as polyethylene and polypropylene for the purpose to delay the oxidation reaction of the polymer due to oxygen or traces of ozone in the atmosphere. Additives in plastics may be migrated from the packaging materials into foods, thereby presenting a potential health risk to the consumer. Therefore, it is necessary to determine migration level of antioxidants from food packaging materials to foodstuffs in order to take proactive management. In this study, we have developed a method for the analysis of 10 antioxidants, which are butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), Cyanox 2246, 425 and 1790, Irgafos 168, and Irganox 1010, 1330, 3114 and 1076, migrated from the food packaging materials into four food simulants for aqueous, acidic, alcoholic and fatty foods. The antioxidants were determined by reversed-phase high-performance liquid chromatograph-ultraviolet detector with 276 nm after solid-phase extraction with a hydrophilic-lipophilic balance (HLB) cartridge or dilution with isopropanol. The analytical method showed a good linearity of coefficient ($R^2{\geq}0.99$), limits of detection (0.11~0.41 mg/L), and limits of quantification (0.34~1.24 mg/L). The recoveries of antioxidants spiked to four food simulants ranged from 71.3% to 109.4%. The migrated antioxidants in this study were within the safety levels that resulted from the safety assessment by the estimated daily intake to the tolerable daily intake.

유청단백질로 만들어진 식품포장재에 관한 연구

  • Kim, Seong-Ju
    • 한국유가공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.59-60
    • /
    • 2002
  • Edible films such as wax coatings, sugar and chocolate covers, and sausage casings, have been used in food applications for years$^{(1)}$ However, interest in edible films and biodegradable polymers has been renewed due to concerns about the environment, a need to reduce the quantity of disposable packaging, and demand by the consumer for higher quality food products. Edible films can function as secondary packaging materials to enhance food quality and reduce the amount of traditional packaging needed. For example, edible films can serve to enhance food quality by acting as moisture and gas barriers, thus, providing protection to a food product after the primary packaging is opened. Edible films are not meant to replace synthetic packaging materials; instead, they provide the potential as food packagings where traditional synthetic or biodegradable plastics cannot function. For instance, edible films can be used as convenient soluble pouches containing single-servings for products such as instant noodles and soup/seasoning combination. In the food industry, they can be used as ingredient delivery systems for delivering pre-measured ingredients during processing. Edible films also can provide the food processors with a variety of new opportunities for product development and processing. Depends on materials of edible films, they also can be sources of nutritional supplements. Especially, whey proteins have excellent amino acid balance while some edible films resources lack adequate amount of certain amino acids, for example, soy protein is low in methionine and wheat flour is low in lysine$^{(2)}$. Whey proteins have a surplus of the essential amino acid lysine, threonine, methionine and isoleucine. Thus, the idea of using whey protein-based films to individually pack cereal products, which often deficient in these amino acids, become very attractive$^{(3)}$. Whey is a by-product of cheese manufacturing and much of annual production is not utilized$^{(4)}$. Development of edible films from whey protein is one of the ways to recover whey from dairy industry waste. Whey proteins as raw materials of film production can be obtained at inexpensive cost. I hypothesize that it is possible to make whey protein-based edible films with improved moisture barrier properties without significantly altering other properties by producing whey protein/lipid emulsion films and these films will be suitable far food applications. The fellowing are the specific otjectives of this research: 1. Develop whey protein/lipid emulsion edible films and determine their microstructures, barrier (moisture and oxygen) and mechanical (tensile strength and elongation) properties. 2. Study the nature of interactions involved in the formation and stability of the films. 3. Investigate thermal properties, heat sealability, and sealing properties of the films. 4. Demonstrate suitability of their application in foods as packaging materials. Methodologies were developed to produce edible films from whey protein isolate (WPI) and concentrate (WPC), and film-forming procedure was optimized. Lipids, butter fat (BF) and candelilla wax (CW), were added into film-forming solutions to produce whey protein/lipid emulsion edible films. Significant reduction in water vapor and oxygen permeabilities of the films could be achieved upon addition of BF and CW. Mechanical properties were also influenced by the lipid type. Microstructures of the films accounted for the differences in their barrier and mechanical properties. Studies with bond-dissociating agents indicated that disulfide and hydrogen bonds, cooperatively, were the primary forces involved in the formation and stability of whey protein/lipid emulsion films. Contribution of hydrophobic interactions was secondary. Thermal properties of the films were studied using differential scanning calorimetry, and the results were used to optimize heat-sealing conditions for the films. Electron spectroscopy for chemical analysis (ESCA) was used to study the nature of the interfacial interaction of sealed films. All films were heat sealable and showed good seal strengths while the plasticizer type influenced optimum heat-sealing temperatures of the films, 130$^{\circ}$C for sorbitol-plasticized WPI films and 110$^{\circ}$C for glycerol-plasticized WPI films. ESCA spectra showed that the main interactions responsible for the heat-sealed joint of whey protein-based edible films were hydrogen bonds and covalent bonds involving C-0-H and N-C components. Finally, solubility in water, moisture contents, moisture sorption isotherms and sensory attributes (using a trained sensory panel) of the films were determined. Solubility was influenced primarily by the plasticizer in the films, and the higher the plasticizer content, the greater was the solubility of the films in water. Moisture contents of the films showed a strong relationship with moisture sorption isotherm properties of the films. Lower moisture content of the films resulted in lower equilibrium moisture contents at all aw levels. Sensory evaluation of the films revealed that no distinctive odor existed in WPI films. All films tested showed slight sweetness and adhesiveness. Films with lipids were scored as being opaque while films without lipids were scored to be clear. Whey protein/lipid emulsion edible films may be suitable for packaging of powder mix and should be suitable for packaging of non-hygroscopic foods$^{(5,6,7,8,)}$.

  • PDF