• Title/Summary/Keyword: Oxidizer Flow Control System

Search Result 15, Processing Time 0.024 seconds

Experimental Investigation on Water Hammer Phenomenon in the Recirculation Line of a Liquid Rocket Engine (액체로켓엔진 재순환 유로에서의 수격현상에 관한 실험적 연구)

  • Kim, Bokyem;Hong, Moongeun;Lee, Jisung;Kim, Junghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.110-118
    • /
    • 2021
  • In a liquid rocket engine system, the flow of oxidizer into the combustion chamber is controlled by the main oxidizer shut-off valve. When the valve is closed, the oxidizer flows via the recirculation line, not into the combustion chamber. In this situation, the measured pressure could be much higher than a design value because of the water hammer phenomenon. In this paper, the experiments on the water hammer in the recirculation line with different initial conditions were conducted in order to study the pressure wave produced in each case. According to the experimental results, characteristics of the pressure wave in the recirculation line depend on the initial condition. To be specific, the pressure surge is maximized in case that the shock is condensation-oriented in the end of the recirculation line.

Thrust Control of Hybrid Propulsion System for Lunar Exploration (달 탐사를 위한 하이브리드 추진 시스템 추력제어)

  • Moon, Keunhwan;Han, Seongjoo;Kim, Hakchul;Kim, Kyehwan;Kim, Jinkon;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.6
    • /
    • pp.34-41
    • /
    • 2014
  • A feasibility study of thrust control of hybrid propulsion system for lunar exploration is presented. The thrust control experiments were performed by controlling the oxidizer mass flow rate where the thrust modulation is carried by using a ball valve and a stepping motor. The gaseous oxygen (GOX) and the HDPE (High Density PolyEthylene) were used for the oxidizer and solid fuel, respectively. It was found that the thrust levels were stable without much fluctuation during the modulation period, and that the thrust was exactly controlled with target thrust modulation ratio of 53% and 32%.

Closing Characteristics of a Main Oxidizer Shut-off Valve (연소기 산화제 개폐밸브 닫힘 작동특성)

  • Hong, Moongeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.717-724
    • /
    • 2020
  • We study the closing characteristics of a self-sustainable poppet valve which serves as a main oxidizer shut-off valve for liquid rocket engines. Numerical analysis for predicting closing transient responses are presented and the calculated results have been verified by a comparison with experimental data. The effective area of a pilot gas discharge system and the pressure distribution of passage flow around the valve moving part are shown to be main parameters in determining the closing characteristics for dry and cryogenic conditions, respectively. Moreover, it is presented that the passage flow pressure at the valve closing moment as well as the valve closing velocity can be effectively adjusted by the appropriate employment of the pilot gas.

An Experimental Study on Mode Switching from Air-firing to Oxy-firing in Pilot-scale Combustion Systems (미분탄 순산소 연소 운전 모드 전환 과정에 대한 Pilot 규모 설비에서의 실험적 연구)

  • Choi, Chong-Gun;Na, Ik-Hwan;Lee, Jae-Wook;Chae, Tae-Young;Yang, Won;Kim, Young-Ju;Kim, Jong-An;Seo, Sang-Il
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.3
    • /
    • pp.12-20
    • /
    • 2011
  • Oxy-coal combustion for $CO_2$ capture in coal power plants entails a mode switching from air-firing to oxyfiring. In this study, procedure of the mode switching was investigated and discussed through experiments in pilot scale facilities: (1) a 0.3 $MW_{th}$ furnace with a vertical single burner and a FGR(Flue Gas Recirculation) system (2) a 1 $MW_{th}$ furnace with horizontal 4 burners and a FGR system. Principle of the mode switching was established and performed with control of FD fan, FGR fan, ID fan and oxygen flow rates. We have found that equivalence ratio in the oxy-firing mode should be increased more than that in the air-firing to achieve stable mode switching. Control of FD, ID and FGR fans should be performed carefully in the mode switching, in the sense of complete combustion and flame attachment. Moisture contents in the ash and the flue gas recycled to the primary oxidizer stream should be removed to prevent condensation, corrosion and duct clogging.

Rounded Entry Orifice Characteristics for Pressurization Control (가압제어용 둥근 유입형 오리피스 특성)

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Jang, Je-Sung;Shin, Dong-Sung;Han, Sang-Yeop
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.401-404
    • /
    • 2008
  • Pressurization system in a liquid-propellant launcher supplies the controlled gas into the ullage volume of propellant tanks to feed propellants to combustion chamber by pressurizing propellants stored in propellant tanks. The ullage part of propellant tank should be constantly pressurized to supply the propellants stored in propellant tanks to turbo-pump or combustion chamber by pressurant pressurization system. Pressurant used to pressurize propellants is generally stored in a series of tanks at cryogenic temperature and high preassure inside an oxidizer tank. The reason is to store the quantity of pressurant as much as possible and to make pressurant tanks as small as (i.e. as light as) possible. However for test convenience pressurant tank is located at STP (standard temperature and pressure) environment in this study. Orifices are widely adapted to several pressurization systems in liquid rocket propulsion systems. Discharge coefficients of orifices are essentially needed for the optimized design of pressurization system in liquid rocket propulsion system. For this study gaseous nitrogen was served as pressurant and rounded entry orifices were employed. The forty-two (42) rounded entry orifices (the radii of curvatures are 0.5 and 1.0) have been tested experimentally in the supersonic flow region. The discharge coefficients of rounded entry orifices with inside diameters ranging from about 1.4 to 5.0mm was measured with 0.95 ${\sim}$ 0.99.

  • PDF