• Title/Summary/Keyword: Oxidized protein

Search Result 161, Processing Time 0.023 seconds

Ameliorative effect of onion (Allium Cepa L.) flesh and peel on amyloid-β-induced cognitive dysfunction via mitochondrial activation (미토콘드리아 활성화를 통한 양파(Allium Cepa L.) 과육 및 과피의 Amyloid-β 유도성 인지손상에 대한 개선효과)

  • Park, Seon Kyeong;Lee, Uk;Kang, Jin Yong;Kim, Jong Min;Shin, Eun Jin;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.263-273
    • /
    • 2020
  • In this study, in order to confirm the ameliorative effects of onion (Allium cepa L.) flesh and peel on amyloidbeta (Aβ)-induced cognitive dysfunction, we evaluated their in vitro neuroprotection and in vivo cognitive functions. As the result of in vitro neuroprotection, the protective effect of the ethyl acetate fraction of onion flesh (EOF) on Aβ-induced cytotoxicity was similar to that of the ethyl acetate fraction of onion peel (EOP). In the behavioral tests, the EOF and EOP effectively improved the Aβ-induced learning and memory impairments. For this reason, it could be concluded that the EOF and EOP improved the antioxidant activities (superoxide dismutase, oxidized glutathione/total glutathione, and malondialdehyde) in brain tissue. In addition, the EOF and EOP effectively activated mitochondrial functions by protecting the mitochondrial membrane potential, ATP, mitochondria-mediated protein (BAX and cytochrome c), and caspase 3/7 activities. The EOF and EOP also improved the cholinergic system (acetylcholinesterase and acetylcholine). Therefore, we suggest that onion could be used for management of Aβ-induced cognitive dysfunction.

Expanded IL-22+ Group 3 Innate Lymphoid Cells and Role of Oxidized LDL-C in the Pathogenesis of Axial Spondyloarthritis with Dyslipidaemia

  • Hong Ki Min;Jeonghyeon Moon;Seon-Yeong Lee;A Ram Lee;Chae Rim Lee;Jennifer Lee;Seung-Ki Kwok;Mi-La Cho;Sung-Hwan Park
    • IMMUNE NETWORK
    • /
    • v.21 no.6
    • /
    • pp.43.1-43.14
    • /
    • 2021
  • Group 3 innate lymphoid cells (ILC3), which express IL-22 and IL-17A, has been introduced as one of pathologic cells in axial spondyloarthritis (axSpA). Dyslipidaemia should be managed in axSpA patients to reduce cardiovascular disease, and dyslipidaemia promotes inflammation. This study aimed to reveal the role of circulating ILC3 in axSpA and the impact of dyslipidaemia on axSpA pathogenesis. AxSpA patients with or without dyslipidaemia and healthy control were recruited. Peripheral blood samples were collected, and flow cytometry analysis of circulating ILC3 and CD4+ T cells was performed. The correlation between Ankylosing Spondylitis Disease Activity Score (ASDAS)-C-reactive protein (CRP) and circulating immune cells was evaluated. The effect of oxidized low-density lipoprotein cholesterol (oxLDL-C) on immune cell differentiation was confirmed. AxSpA human monocytes were cultured with with oxLDL-C, IL-22, or oxLDL-C plus IL-22 to evaluate osteoclastogenesis using tartrate-resistant acid phosphatase (TRAP) staining and real-time quantitative PCR of osteoclast-related gene expression. Total of 34 axSpA patients (13 with dyslipidaemia and 21 without) were included in the analysis. Circulating IL-22+ ILC3 and Th17 were significantly elevated in axSpA patients with dyslipidaemia (p=0.001 and p=0.034, respectively), and circulating IL-22+ ILC3 significantly correlated with ASDAS-CRP (Rho=0.4198 and p=0.0367). Stimulation with oxLDL-C significantly increased IL-22+ ILC3, NKp44- ILC3, and Th17 cells, and these were reversed by CD36 blocking agent. IL-22 and oxLDL-C increased TRAP+ cells and osteoclast-related gene expression. This study suggested potential role of circulating IL-22+ ILC3 as biomarker in axSpA. Furthermore, dyslipidaemia augmented IL-22+ ILC3 differentiation, and oxLDL-C and IL-22 markedly increased osteoclastogenesis of axSpA.

Oxidized LDL Accelerates Cartilage Destruction and Inflammatory Chondrocyte Death in Osteoarthritis by Disrupting the TFEB-Regulated Autophagy-Lysosome Pathway

  • Jeong Su Lee;Yun Hwan Kim;JooYeon Jhun;Hyun Sik Na;In Gyu Um;Jeong Won Choi;Jin Seok Woo;Seung Hyo Kim;Asode Ananthram Shetty;Seok Jung Kim;Mi-La Cho
    • IMMUNE NETWORK
    • /
    • v.24 no.3
    • /
    • pp.15.1-15.18
    • /
    • 2024
  • Osteoarthritis (OA) involves cartilage degeneration, thereby causing inflammation and pain. Cardiovascular diseases, such as dyslipidemia, are risk factors for OA; however, the mechanism is unclear. We investigated the effect of dyslipidemia on the development of OA. Treatment of cartilage cells with low-density lipoprotein (LDL) enhanced abnormal autophagy but suppressed normal autophagy and reduced the activity of transcription factor EB (TFEB), which is important for the function of lysosomes. Treatment of LDL-exposed chondrocytes with rapamycin, which activates TFEB, restored normal autophagy. Also, LDL enhanced the inflammatory death of chondrocytes, an effect reversed by rapamycin. In an animal model of hyperlipidemia-associated OA, dyslipidemia accelerated the development of OA, an effect reversed by treatment with a statin, an anti-dyslipidemia drug, or rapamycin, which activates TFEB. Dyslipidemia reduced the autophagic flux and induced necroptosis in the cartilage tissue of patients with OA. The levels of triglycerides, LDL, and total cholesterol were increased in patients with OA compared to those without OA. The C-reactive protein level of patients with dyslipidemia was higher than that of those without dyslipidemia after total knee replacement arthroplasty. In conclusion, oxidized LDL, an important risk factor of dyslipidemia, inhibited the activity of TFEB and reduced the autophagic flux, thereby inducing necroptosis in chondrocytes.

Effects of Korean Wheat on LDL Oxidation and Atherosclerosis in Cholesterol-Fed Rabbits (고콜레스테롤혈증 유발 가토를 이용한 우리밀의 LDL산화 및 동맥경화 예방 효과)

  • Choe, Myeon;Kim, Hyun-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.1
    • /
    • pp.104-108
    • /
    • 2002
  • Numerous studies have suggested the involvement of oxidative processes in the pathogenesis of atherosclerosis and especially of oxidized low density lipoproteins (LDL). We studied the effect of Korean wheat on the oxidizability of LDL and the development of experimental atherosclerosis in rabbits on cholesterol diet. For the approach of the aim, antioxidative activity of wheat extracts against oxidation of LDL was investigated. The antiatherogenic effect of wheat was studied against Newzealand whithe (NZW) rabbits fed containing the wheat powder for 12 weeks. PBS extracts of Korean and imported wheats decreased LDL oxidation induced by copper ion by 62.3%, 52.6% respectively in comparison with control. Liver thiobarbituric acid reactive substance (TBARS ) levels of rabbits were significantly lowered in Korean wheat fed group (0.397$\pm$ 0.029 nmol MDA/mg protein, p<0.05) compared to control (0.496$\pm$0.021 nmol MDA/mg protein) and imported wheat group (0.478$\pm$0.019 nmol MDA/mg protein). TBARS levels of kidney showed no significant difference among treatment groups. The aorta of cholesterol-fed rabbits showed typical atherosclerotic lesions when compared with the controls, but the microscopic differences between groups was not clear. The present study suggests that Korean wheat may have higher antioxidative capacity than imported wheat and have more beneficial effects for the treatment of disease by inhibiting the oxidation of LDL.

Oxidative Stress-dependent Structural and Functional Regulation of 2-cysteine Peroxiredoxins In Eukaryotes Including Plant Cells (산화 스트레스에 의존한 식물 및 진핵세포 2-시스테인 퍼록시레독신의 기능 조절)

  • Jang, Ho-Hee;Kim, Sun-Young;Lee, Sang-Yeol
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Peroxiredoxins (Prxs) are ubiquitously distributed and play important functions in diverse cellular signaling systems. The proteins are largely classified into three groups, such as typical 2-Cys Prx, atypical 2-Cys Prx, and 1-Cys Prx, that are distinguished by their catalytic mechanisms and number of Cys residues. From the three classes of Prxs, the typical 2-Cys Prx containing the two-conserved Cys residues at its N-terminus and C-terminus catalyzes $H_2O_2$ with the use of thioredoxin (Trx) as an electron donor. During the catalytic cycle, the N-terminal Cys residue undergoes a peroxide-dependent oxidation to sulfenic acid, which can be further oxidized to sulfinic acid at the presence of high concentrations of $H_2O_2$ and a Trx system containing Trx, Trx reductase, and NADPH. The sulfinic acid form of 2-Cys Prx is reduced by the action of sulfiredoxin which requires ATP as an energy source. Under the strong oxidative or heat shock stress conditions, 2-Cys Prx in eukaryotes rapidly switches its protein structure from low-molecular-weight species to high-molecular-weight protein structures. In accordance with its structural changes, the protein concomitantly triggers functional switching from a peroxidase to a molecular chaperone, which can protect its substrate denaturation from external stress. In addition to its N-terminal active site, the C-terminal domain including 'YF-motif' of 2-Cys Prx plays a critical role in the structural changes. Therefore, the C-terminal truncated 2-Cys Prxs are not able to regulate their protein structures and highly resistant to $H_2O_2$-dependent hyperoxidation, suggesting that the reaction is guided by the peroxidatic Cys residue. Based on the results, it may be concluded that the peroxidatic Cys of 2-Cys Prx acts as an '$H_2O_2$-sensor' in the cells. The oxidative stress-dependent regulation of 2-Cys Prx provides a means of defense systems in cells to adapt stress conditions by activating intracellular defense signaling pathways. Particularly, 2-Cys Prxs in plants are localized in chloroplasts with a dynamic protein structure. The protein undergoes conformational changes again oxidative stress. Depending on a redox-potential of the chloroplasts, the plant 2-Cys Prx forms super-molecular weight protein structures, which attach to the thylakoid membranes in a reversible manner.

A short-term supranutritional vitamin E supplementation alleviated respiratory alkalosis but did not reduce oxidative stress in heat stressed pigs

  • Liu, Fan;Celi, Pietro;Chauhan, Surinder Singh;Cottrell, Jeremy James;Leury, Brian Joseph;Dunshea, Frank Rowland
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.2
    • /
    • pp.263-269
    • /
    • 2018
  • Objective: Heat stress (HS) triggers oxidative stress and respiratory alkalosis in pigs. The objective of this experiment was to study whether a short-term supranutritional amount of dietary vitamin E (VE) can mitigate oxidative stress and respiratory alkalosis in heat-stressed pigs. Methods: A total of 24 pigs were given either a control diet (17 IU/kg VE) or a high VE (200 IU/kg VE; HiVE) diet for 14 d, then exposed to thermoneutral (TN; $20^{\circ}C$, 45% humidity) or HS ($35^{\circ}C$, 35% to 45% humidity, 8 h daily) conditions for 7 d. Respiration rate and rectal temperature were measured three times daily during the thermal exposure. Blood gas variables and oxidative stress markers were studied in blood samples collected on d 7. Results: Although HiVE diet did not affect the elevated rectal temperature or respiration rate observed during HS, it alleviated (all p<0.05 for diet${\times}$temperature) the loss of blood $CO_2$ partial pressure and bicarbonate, as well as the increase in blood pH in the heat-stressed pigs. The HS reduced (p = 0.003) plasma biological antioxidant potential (BAP) and tended to increase (p = 0.067) advanced oxidized protein products (AOPP) in the heat-stressed pigs, suggesting HS triggers oxidative stress. The HiVE diet did not affect plasma BAP or AOPP. Only under TN conditions the HiVE diet reduced the plasma reactive oxygen metabolites (p<0.05 for diet${\times}$temperature). Conclusion: A short-term supplementation with 200 IU/kg VE partially alleviated respiratory alkalosis but did not reduce oxidative stress in heat-stressed pigs.

Kinetic Properties of Manganese Peroxidase from the Mushroom Stereum ostrea and its Ability to Decolorize Dyes

  • Praveen, K.;Usha, K.Y.;Viswanath, Buddolla;Reddy, B. Rajasekhar
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1540-1548
    • /
    • 2012
  • Manganese peroxidase (MnP) was isolated from the culture filtrate of the wood log mushroom Stereum ostrea (S. ostrea), grown on Koroljova medium, and then purified by ammonium sulfate [70% (w/v)] fractionation, DEAE-cellulose anion exchange chromatography, and Sephadex G-100 column chromatography, with an attainment of 88.6-fold purification and the recovery of 22.8% of initial activity. According to SDS-PAGE the molecular mass of the MnP was 40 kDa. The optimal pH and temperature were found to be 4.5 and $35^{\circ}C$, respectively. The enzyme was stable even after exposure to a pH range of 4.5 to 6.0, and at temperatures of up to $35^{\circ}C$ at a pH of 4.5 for 1h. The $K_m$ and $V_{max}$ values for the substrate phenol red were found to be $8{\mu}m$ and 111.14 U/mg of protein, respectively. The MnP also oxidized other substrates such as guaiacol, DMP, and veratryl alcohol. Sodium azide, EDTA, SDS, $Cu^{2+}$, and $Fe^{2+}$, at 1-5 mM, strongly inhibited enzyme activity, whereas $Ca^{2+}$ and $Zn^{2+}$ increased enzyme activity. The participation of the purified enzyme in the decolorization of dyes suggests that S. ostrea manganese peroxidase could be effectively employed in textile industries.

Expression of Cytoplasmic 8-oxo-Gsn and MTH1 Correlates with Pathological Grading in Human Gastric Cancer

  • Song, Wen-Jie;Jiang, Ping;Cai, Jian-Ping;Zheng, Zhi-Qiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6335-6338
    • /
    • 2015
  • Background: Cancers have dysfunctional redox regulation resulting in production of reactive oxygen species (ROS), damaging DNA, RNA and free NTPs, and causing the accumulation of oxidative nucleic acids in cytoplasm. The major types are 8-oxo-7,8-dihydroguanine(8-oxoGsn) in RNA and 8-oxo-7,8-dihydro-2' deoxyguanosine(8-oxodGsn) in Mt-DNA. The MTH1 protein sanitizes oxidized nucleotide pools from NTPs to monophosphates, preventing the occurrence of transversion mutations. This study concerned cytoplasmic 8-oxodGsn/Gsn and MTH1 expression in gastric cancer and para-cancer tissues and elucidated roles of nucleic-acid oxidation and anti-oxidation. Materials and Methods: A polymer HRP detection system was used to detect 8-oxo-Gsn/dGsn and MTH1 expression in 51 gastric cancer and para-cancer tissue samples. Analyses of patient clinical and pathological data were also performed. Results: The expression of MTH1 and the 8-oxo-dGsn/Gsn ratio were significantly higher in cancer tissues than para-cancer tissues (P<0.05). Cytoplasmic 8-oxo-Gsn and MTH1 were both found to positively correlate (P<0.05) with tumor differentiation, while no significant associations were found with gender, age, invasion depth, lymph node metastasis and clinical stage (P>0.05). Conclusions: We found 8-oxo-dGsn/Gsn and MTH1 are both highly expressed in gastric cancer tissues, especially in well differentiated lesions. In addition, oxidated mtDNA is prevalently expressed in gastric cancers, while 8-oxo-Gsn expression in cytoplasmic RNA is a bit lower, but more selectively.

Mechanism of Stress-dependent Structural Change of Yeast Prx (Yeast Prx의 스트레스의존 구조적 변화의 기작)

  • Kang, Ji-Seoun;Cheong, Gang-Won
    • Applied Microscopy
    • /
    • v.35 no.4
    • /
    • pp.16-23
    • /
    • 2005
  • Peroxiredoxins (Prxs) are a superfamily of thiol-specific antioxidant proteins present in all organism and involved in the hydroperoxide detoxification of the cell. To determine the structural organization of yeast-Prx, electron microscopic analysis was performed. The average images of yeast-Prxs revealed three different structure, i.e. spherical-shaped structure, ring-shaped structure and irregularly-shaped small particles. In order to analyze the conformational change of yeast-Prx by reduction and oxidation, Prxs were subjected to DTT and $H_2O_2$. In presence of DTT, yeast-Prx showed a high tendency to form a decamer. However, they changed into dimeric or spherical structure in the oxidized state. Here we also show ionic interaction between dimeric subunits is primarily responsible for yeast-Prx oligomerization.

Studies on the Electrical Properties and Pattern Fabrication of Conjugated Self-Assembled Monolayer by Deep UV Light (원자외선에 의한 공액구조 자기조립 단분자막의 패턴 제작 및 전기적 특성)

  • Oh Se Young;Choi Hyung Seok;Kim Hee Jeong;Park Je Kyun
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.331-337
    • /
    • 2005
  • In general, alkanethiolates having carboxylic acid in the tail group have been used as biorecepton. In this study, we have immobilized a cytochrome c protein using conjugated aromaticthiolates in order to improve the electrical property and physical stability of alkanethilolates. The pattern formation of self-assembled aromaticthiolate monolayers was as follow. Aromatic thiolates bound on the gold surface by the adsorption of 4'-mercapto-biphenyl-4-carboxylic acid and 4-mercapto-[1,1';4',1']terphenyl-4'-carboxylic acid were oxidized by the irradiation of deep UV light through a negative mask. The negative type pattern of the self-assembled monolayer (SAM) was obtained by developing with a deionized water. The pattern formation and electrical conductivity of aromaticthiolate SAMs was investigated by the measurements of STM and AFM. In addition, cytochrome c or ferrocene amide was immobilized onto the patterned substrate. We also studied on the effect of conjugated aromatic thiolates on the electrical activity of cytochrome c or ferrocene amide by cyclic voltammetry.