• Title/Summary/Keyword: Oxidized Soybean Oil

Search Result 29, Processing Time 0.018 seconds

Effect of Non-oxidized and Oxidized Soybean Oil Supplemented with Two Levels of Antioxidant on Broiler Performance

  • Anjum, M.I.;Alam, M.Z.;Mirza, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.5
    • /
    • pp.713-720
    • /
    • 2002
  • A study was designed to determine the effects on broiler performance of two levels of antioxidant (ethoxyquin) in poultry rations containing two levels of oxidized and non-oxidized soybean oil. One hundred and eighty, day old broiler chicks were randomly divided into six experimental groups comprising thirty chicks on each treatment. Six experimental rations having 2% nonoxidized soybean oil, 2% and 3% oxidized soybean oil, all three supplemented with normal (125 g/t) or higher (175 g/t) level of ethoxyquin, were formulated for both starter (0-28 days) and finisher (29-42 days) phases. These rations were randomly fed to six experimental groups having 30 birds on each ration and three replicates on each treatment. Weight gain and feed conversion ratio (FCR) of chicks fed 2% non-oxidized and 2% oxidized soybean oil were statistically non-significant. Weight gain in groups fed 3% oxidized oil was significantly lower than non-oxidized group while FCR was significantly lower than both groups. Weight gain in the higher level ethoxyquin group was significantly better than lower level, while feed intake and FCR were statistically non-significant in both levels of ethoxyquin. Acid and Thiobarbituric Acid (TBA) values in the three groups differed significantly with the lower in non-oxidized group and highest in the 3% oxidized group. Higher level of ethoxyquin significantly lower acid and TBA values compared to lower level of ethoxyquin. Thus it can be concluded that oxidation of oil reduces its feeding value and that the addition of ethoxyquin is beneficial.

Consumption of Oxidized Soybean Oil Increased Intestinal Oxidative Stress and Affected Intestinal Immune Variables in Yellow-feathered Broilers

  • Liang, Fangfang;Jiang, Shouqun;Mo, Yi;Zhou, Guilian;Yang, Lin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1194-1201
    • /
    • 2015
  • This study investigated the effect of oxidized soybean oil in the diet of young chickens on growth performance and intestinal oxidative stress, and indices of intestinal immune function. Corn-soybean-based diets containing 2% mixtures of fresh and oxidized soybean oil provided 6 levels (0.15, 1.01, 3.14, 4.95, 7.05, and $8.97meqO_2/kg$) of peroxide value (POV) in the diets. Each dietary treatment, fed for 22 d, had 6 replicates, each containing 30 birds (n = 1,080). Increasing POV levels reduced average daily feed intake (ADFI) of the broilers during d 1 to 10, body weight and average daily gain at d 22 but did not affect overall ADFI. Concentrations of malondialdehyde (MDA) increased in plasma and jejunum as POV increased but total antioxidative capacity (T-AOC) declined in plasma and jejunum. Catalase (CAT) activity declined in plasma and jejunum as did plasma glutathione S-transferase (GST). Effects were apparent at POV exceeding $3.14meqO_2/kg$ for early ADFI and MDA in jejunum, and POV exceeding $1.01meqO_2/kg$ for CAT in plasma and jejunum, GST in plasma and T-AOC in jejunum. Relative jejunal abundance of nuclear factor kappa B ($NF-{\kappa}B$) P50 and $NF-{\kappa}B$ P65 increased as dietary POV increased. Increasing POV levels reduced the jejunal concentrations of secretory immunoglobulin A and cluster of differentiation (CD) 4 and CD8 molecules with differences from controls apparent at dietary POV of 3.14 to $4.95meqO_2/kg$. These findings indicated that growth performance, feed intake, and the local immune system of the small intestine were compromised by oxidative stress when young broilers were fed moderately oxidized soybean oil.

Studies on Thermal Oxidation of Soybean Oil : Changes in Some Rheological Properties of a Soybean Oil during Thermal Oxidation (가열산화중의 콩기름의 유동학적 연구)

  • Shin, Ae-Ja;Kim, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.141-145
    • /
    • 1985
  • In the present study, an attempt was made to investigate the characteristics of rheological properties of a themally oxidized soybean oil. Various flow curves of the oxidized oils were obtained using a broad range of shear rate (452-904 rpm). The flow curves showed the characteristics of thixotropic flow, and as temperature decreased (range : 13-$37^{\circ}C$) they demonstrated increasingly stronger thixotropic properties. A thixotropic slope similar to the coefficient of thixotropy as applied to the rheological characteristics of the thermally oxidized soybean oil to predict its rheological properties quantitatively at an equilibrium state. The empirical formula with the thixotropic slope was found satisfactory in predicting the Non-Newtonian behavior of the thermally oxidized soybean oil.

  • PDF

The Effect of Antioxidants Added Thermally Oxidized Oil on Serum and Tissue in Rats (항산화물 첨가 가열산화유가 흰쥐의 혈청과 조직에 미치는 영향)

  • Cho, Chung-Soon;Lee, In-Sil;Jeong, Seung-Tai;Seong, Wan-Je;Park, Hang-Sin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.41-49
    • /
    • 1989
  • This study was carried out to study influence of antioxidants on serum and tissue of rats fed with thermally oxidized oil. The experimental animals used 30male rats of sprague-dawley weighting $150{\pm}25g$. They are divided into 5 groups and fed to experimental diets which are composed of 15% thermally oxidized oil in addition to ascorbic acid, Vitamin E, Ethylendintrioteraaceticacid(EDTA) and none added oxidized oil by heat and fresh soybean oil group. Thermally oxidized oil was prepared from the soybean oil by heating at $180^{\circ}C$ for 30 hours. After feeding for 4 weeks, the result are as follows; 1. Body weight gain were lower B diet group than A diet group. 2. Total cholesterol levels in serum of all experimental diet groups except B diet group were higher than that of A diet group. 3. HDL-cholesterol levels of all experimental diet groups except E diet group were lower than that of A diet group. 4. The activities of GOT, GPT in serum of all experimental diet groups except B diet group and D diet group were higher than that of A diet group. 5. Vitamin E levels in serum of E diet group were highest than that of all experimental diet groups, and Vitamin E levels in liver of A diet group were highest than that of all experimental diet groups. 6. Lipid peroxide in Serum were highest B diet group than that of all experimental diet groups and the other experimental diet group significantly lower than that of the A diet group. 7. Lipid peroxide in liver of all experimental diet group except E diet group were significantly higher than that A diet group and lipid peroxide in kidney of all experimental diet group except B diet group were lower than that of A diet group. Four these results, as Vitamin C, Vitamin E, and EDTA added diets have effect of thermally oil by antioxidants, it could be suggested that thermally soybean oil diet has required to add antioxidant because it has not sufficient Vitamin E for antioxidant and intake and overtake level of thermally soybean oil diet should be studied to go ahead.

Mutagenicity of Thermally Oxidized Soybean Oil (가열산화 대두유의 돌연변이원성)

  • Lee, Jin-Young;Ahn, Myung-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1213-1220
    • /
    • 2000
  • The mutagenicity of the thermally oxidized soybean oils was investigated. Each oil sample was taken after 0, 8, 16, 24, 32, 40, and 48 hours of heating at a temperature of $180{\pm}3^{\circ}C$, and was used to study the changes of peroxide value(POV), acid value(AV), iodine value(IV), conjugated dienoic acid content(CDA content, %), and fatty acid composition. Another set of samples was fractionated into non-oxidized and oxidized fractions by column chromatography using silica gel. The mutagenicity of the samples taken from the thermally oxidized oils as well as the non-oxidized and oxidized fractions was investigated with the Ames test. Bacterial tester strains used in the present study were the histidine auxotrophic strains of S. typhimurium TA100, TA1535 and TA 102 for the detection of base pair, and TA98 and TA1537 for frame shift mutations. Each set of samples was dissolved in tetrahydrofuran and tested at doses ranging from 0.05 to 5 mg/plate. The oxidized fractions increased significantly the number of $His^+$ revertant colonies of TA100, TA1537 and TA102, thereby showed mutagenic activity on these strains. However none of the oil samples taken within the 48 hours oxidation period showed any mutagenic activity with and without metabolic activation.

  • PDF

An evaluation of heat on protein oxidation of soy protein isolate or soy protein isolate mixed with soybean oil in vitro and its consequences on redox status of broilers at early age

  • Zhang, Xianglun;Lu, Peng;Xue, Wenyue;Wu, Dawei;Wen, Chao;Zhou, Yanmin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.8
    • /
    • pp.1135-1142
    • /
    • 2017
  • Objective: The objective of this study was to evaluate effects of heat treatment and soybean oil inclusion on protein oxidation of soy protein isolate (SPI) and of oxidized protein on redox status of broilers at an early age. Methods: SPI mixed with soybean oil (SPIO) heated at $100^{\circ}C$ for 8 h was used to evaluate protein oxidation of SPI. A total of two hundred and sixteen 1-day-old Arbor Acres chicks were divided into 3 groups with 6 replicates of 12 birds, receiving basal diet (CON), heat-oxidized SPI diet (HSPI) or mixture of SPI and 2% soybean oil diet (HSPIO) for 21 d, respectively. Results: Increased protein carbonyl, decreased protein sulfhydryl of SPI were observed as heating time increased in all treatments (p<0.05). Addition of 2% soybean oil increased protein carbonyl of SPI at 8 h heating (p<0.05). Dietary HSPI and HSPIO decreased the average daily gain of broilers as compared with the CON (p<0.05). Broilers fed HSPI and HSPIO exhibited decreased glutathione (GSH) in serum, catalase activity and total sulfhydryl in liver and increased malondialdehyde (MDA) and protein carbonyl in serum, advanced oxidation protein products (AOPPs) in liver and protein carbonyl in jejunal mucosa as compared with that of the CON (p<0.05). Additionally, broilers receiving HSPIO showed decreased glutathione peroxidase activity (GSH-Px) in serum, GSH and hydroxyl radical scavenging capacity in liver, GSH-Px activity in duodenal mucosa, GSH-Px activity and superoxide anion radical scavenging capacity in jejunal mucosa and increased AOPPs in serum, MDA and protein carbonyl in liver, MDA and AOPPs in jejunal mucosa (p<0.05). Conclusion: Protein oxidation of SPI can be induced by heat and soybean oil and oxidized protein resulted in redox imbalance in broilers at an early age.

Immune response and antioxidant status of broilers as influenced by oxidized vegetable oil and pomegranate peel

  • Ghasemi-Sadabadi, Mohammad;Ebrahimnezhad, Yahya;Maheri-Sis, Naser;Ghalehkandi, Jamshid Ghiasi;Shaddel-Teli, Abdolahad
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1034-1063
    • /
    • 2021
  • The experiment was designed as a 3 × 3 × 2 factorial arrangement of treatments, including (i) pomegranate peel (zero, 4%, and 8 percent), (ii) oxidized soybean oil (zero, 2%, and 4 percent), and (iii) alpha-tocopherol (zero and 200 mg/kg). Supplementation of 8% pomegranate peel in diets significantly decreased the growth performance of broiler chickens. The supplementation of 4% oxidized oil in diets significantly reduced body weight gain and Feed intake whole experimental period (p < 0.05). The results showed that supplementation of 4% pomegranate peel in the diet was associated with low aspartate transaminase (AST), alanine transaminase, and malondialdehyde (MDA). However, 4% pomegranate peel increased the total antioxidant capacity (TAC) and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. The supplemental 4% oxidized oil increased the serum AST, alanine aminotransferase (ALT), and MDA concentrations. TAC, SOD, and Catalase (CAT) activities were affected by 4% oxidized oil and alpha-tocopherol. The use of oxidized oil and vitamin E decreased MDA concentration. The serum glucose and globulin concentrations were significantly lower in the 8% pomegranate peel. The results showed that supplementation with 4% pomegranate peel in diets reduced serum low-density lipoprotein (LDL). The inclusion of 4% oxidized oil in diets reduced serum glucose and increased the blood lipid concentration such as triglyceride, cholesterol and LDL. Vitamin E supplementation reduced the serum cholesterol and LDL concentrations. The use of 8% pomegranate peel reduced red blood cell (RBC), hemoglobin, and packed cell value (PCV). The results indicated that supplementation with 8% pomegranate peel and 4% oxidized oil in diets decreased the immunoglobulin concentration in broilers. In addition, it was found that the inclusion of 4% pomegranate peel in diets resulted in higher IgG, IgM and total immunoglobulin. Pomegranate peel supplementation significantly decreased meat MDA concentration. Supplementation of 4% oxidized oil increased MDA of meat (p < 0.05). Vitamin E supplementation (200 mg/kg) significantly decreased MDA of meat (p < 0.05). Consequently, the results of this experiment showed that supplementation with 4% pomegranate peel had beneficial effects on broiler chickens. It was also found that feeding 2% oxidized oil in diets had no adverse effect on broilers.

Extraction and Mixing Effects of Grape (Campbell) Seed Oil

  • Kang, Han-Chul;Min, Young-Kyoo;Hwang, Jong-Taek;Kim, Si-Dong;Kim, Tae-Su
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.4
    • /
    • pp.175-179
    • /
    • 1999
  • Grape seed oil was extracted using different preparatory treatments as follows: (1) grinding, (2) grinding and roasting, (3) grinding and wet- roasting, (4) grinding, roasting, and wet-roasting, and (5) grinding, wet-roasting, and wet-roasting. The highest antioxidant activity was obtained from the sample with the method (2). Initial states of oxidation were similar except method (1) that showed more oxidized state, being P.O.V.8. Acid values were observed in the range from 1.42 to 1.89. The lowest acid value was found as 1.42 in method (1) and those of others were somewhat higher, indicating that heating process of roasting produced some free fatty acids. From the results of sensory evaluation, the best odor and taste were obtained from the methods (2) and (3). Repetitive procedure of wet-roasting, like method 5, caused some loss of flavor components and decrease in the sensory evaluation score. Addition of grape seed oil (method 2) to soybean and perilla oil at the level of 20% retained considerable antioxidant activities as much as 4.3 and 5 times, respectively, than 100% soybean or perilla oil stored for 12 weeks. When soybean or perilla oil was mixed with 20% grape seed oils, P.O.V. decreased to half of that of unmixed oils.

  • PDF

Effect of Sannamul and Herb Extract Addition on the Photooxidation of Soybean Oil Emulsion (콩기름 에멀션의 광산화에 대한 산나물과 허브 추출물의 첨가 효과)

  • Song, Aerim;Choe, Eunok
    • Korean journal of food and cookery science
    • /
    • v.33 no.3
    • /
    • pp.275-284
    • /
    • 2017
  • Purpose: This study was performed to evaluate the effects of sannamul or herb extract addition to a soybean oil-in-water emulsion during photooxidation in the presence of chlorophyll. Methods: The emulsion mainly consisted of purified soybean oil and citric acid buffer (pH 4.0) at a weight ratio of 4 to 6, with chlorophyll a addition at 6 mg/kg. Ethanol extract of daraesoon, samnamul, basil, or peppermint was selectively added to the emulsion at 400 mg/kg, and emulsions in glass serum bottles were oxidized at $5^{\circ}C$ under 2,600 lux light for 48 hours. Lipid oxidation of the emulsions was evaluated based on determination of headspace oxygen content, peroxide value, and p-anisidine value. Pigments and antioxidants were also monitored. Results: The emulsion with added samnamul extract with high contents of polyphenols and low chlorophyll content showed lower oxygen consumption, peroxide values, and p-anisidine values, whereas basil and peppermint extracts with high chlorophyll contents increased photooxidation. Chlorophylls were degraded during photooxidation of the emulsions, and the degradation rate was highest in the emulsion with added samnamul extract. Conclusion: The high antioxidant activity of samnamul extract in the photooxidation of soybean oil-in-water emulsion could be due to low chlorophyll content, high concentrations of polyphenol compounds in the extract, as well as rapid degradation of chlorophylls during oxidation.

Effects of Vitamin $B_6$ on the Serum Lipids of Rat Fed with Oxidized Oil by Heat (가열산패유(加熱酸敗油) 급여시(給與時) 흰쥐의 혈청지질(血淸脂質)에 미치는 Vitamin $B_6$의 효과(效果))

  • Maing, Choon-Ho;Kim, Song-Jeon;Lee, Yong-Ock
    • Journal of the Korean Applied Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 1987
  • This experiment is carried out to study influence of vitamin $B_6$ on serum lipids of rat fed with oxidized oil by heat. The experimental animals use 35 male Sprague-Dawley rats weighing 100 ${\pm}$ 2g. They are divided into 5 groups and fed to experimental diets which are added to 10%, 15%, 20% oxidized oil by heat in addition to 0.01%, 0.04%, 0.06% vitamin $B_6$. Oxidized oil by heat is prepared from the soybean oil by heating at $180^{\circ}C$ for 50 hours. After feeding for 4 weeks, lipid concentrations of sera are as follows; 1. Body weights are higher in experimental diet groups than control diet group. 2. Liver weights are higher in experimental diet groups than control diet group, but spleen weights are lower in experimental diet groups than control diet group. 3. The contents of serum total cholesterol, free cholesterol, HDL-cholesterol are lower in experimental diet groups than control diet group. 4. The contents of serum triglyceride are significantly higher in experimental diet groups than control diet group. 5. The contents of serum phospholipid are lower in experimental diet groups than control diet group.