• Title/Summary/Keyword: Oxidized LDL

Search Result 94, Processing Time 0.027 seconds

Functional Properties of Modified Low Density Lipoprotein and Degradation of Modified LDL by Human Monocyte-Macrophages

  • Kim, Tae-Woong;Park, Jae-Hoon;Park, Young-June;Son, Heung-Soon;Yang, Ki-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.362-370
    • /
    • 1995
  • Human plasma low density lipoprotein(LDL) is the main carrier for cholesterol, and recent studies suggest the normal LDL can be readily oxidized by free radical and not interact with LDL receptor. Lipoprotein pariticles are consisted of lipid andprotein, and fatty acids of lipoproteins are prone to oxidation. LDL particles readily undergo oxidative modification by copper. From the results, oxidized LDL altered its biological properties. A marked increase in the electrophoretic mobility of LDl on agarose gel indicated that negative surface charge of the LDL particles was increased. Also, the results from the HPLC showed that oxidized LDL was degraded into several polypeptides nonenzymatically. Degradation tests which measured the amount of 5-IAF labelled oxidized LDL were carried out by monocyte and hepatocyte cell culture. Hepatocyte cell culture of modified LDL did not show consistent pattern. However, binding rate of modified LDL with HMDM(human monocyte derived macrophage) was enhanced with oxidation, but was retarded by addition of antioxidants(hyaluronic acid, vitamin A, vitamin E). Also comparisons of oxidized-LDL, acetyl-LDL and MDA-LDL showed significant differences in the chemical properteis and binding affinity to HMDM. Thus, modificaition of normal LDL altered its biological properties.

  • PDF

Function Properties of Low Density Lipoprotein (LDL) and Oxidized-LDL (저밀도 지질단백질 및 산화 LDL(Oxidized-LDL)의 특성)

  • Tae-Koong Kim
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.3
    • /
    • pp.530-539
    • /
    • 1994
  • All lipoproteins are made up of three major classes of lipids : triglycerides, cholesterol, and phospholipids. Lipoproteins vary in their relative content of these lipids as well as in size and protein content. Human low density lipoprotein (LDL) is a main carrier for cholesterol in the blood stream, and it is well established that cholesterol deposits in the arteries stem primarily from LDL and that increased levels of plasma LDL correlated with in increased risk of atherosclerosis. Various lines of research provide strong evidence that lDL may become oxidized in vivo and that oxidized-LDL is the species involved in the formation of early atherosclerotic lesions. the most crucial findings in this context are the following : (1) Oxidized -LDL has chemotactic properties and if present in the intimal space of the arteries would recruit blood monocytes which then can develop into tissue macrophages ; (2) marcrophages take up oxidized-LDL unregulated to from lipid laden foam cells ; (3) Oxdized-LDLis highly cytotoxic and could be responsible for damage of the endothelial layer and for the destruction of smooth muscle cells.

  • PDF

Oxidized LDL induces phosphorylation of non-muscle myosin IIA heavy chain in macrophages

  • Park, Young Mi
    • BMB Reports
    • /
    • v.48 no.1
    • /
    • pp.48-53
    • /
    • 2015
  • Oxidized LDL (oxLDL) performs critical roles in atherosclerosis by inducing macrophage foam cell formation and promoting inflammation. There have been reports showing that oxLDL modulates macrophage cytoskeletal functions for oxLDL uptake and trapping, however, the precise mechanism has not been clearly elucidated. Our study examined the effect of oxLDL on non-muscle myosin heavy chain IIA (MHC-IIA) in macrophages. We demonstrated that oxLDL induces phosphorylation of MHC-IIA (Ser1917) in peritoneal macrophages from wild-type mice and THP-1, a human monocytic cell line, but not in macrophages deficient for CD36, a scavenger receptor for oxLDL. Protein kinase C (PKC) inhibitor-treated macrophages did not undergo the oxLDL-induced MHC-IIA phosphorylation. Our immunoprecipitation revealed that oxLDL increased physical association between PKC and MHC-IIA, supporting the role of PKC in this process. We conclude that oxLDL via CD36 induces PKC-mediated MHC-IIA (Ser1917) phosphorylation and this may affect oxLDL-induced functions of macrophages involved in atherosclerosis.

Antioxidant Activity of Daidzin and Puerarin toward Oxidation of Human Low Density Lipoprotein (갈근에서 분리한 Daidzin 및 Puerarin의 사람 Low Density Lipoprotein 대한 항산화 효과)

  • 박종옥;김경순;지영애;류병호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.1
    • /
    • pp.25-31
    • /
    • 1997
  • Antioxidative activity of daidzin and puerarin isolated from Puerariae radix against oxidation of low density lipoprotein(LDL) was investigated. The concentration of daidzin at 100$\mu\textrm{g}$/$m\ell$ and puerarin at 60$\mu\textrm{g}$/$m\ell$ inhibited Cu$^{2+}$-mediated oxidation of LDL almost completely. The electrophoretic mobility of oxidized LDL by addition of daidzin(100$\mu\textrm{g}$/$m\ell$) and puerarin(60$\mu\textrm{g}$/$m\ell$) was faster than that of native LDL, but slower than that of oxidized LDL. The oxidized LDL induced by J774 or macrophage was inhibited strongly in the presence of 100$\mu\textrm{g}$/$m\ell$ daidzin and 60$\mu\textrm{g}$/$m\ell$ Puerarin. The formation of conjugated dienes in the oxidized LDL was strongly inhibited by 100$\mu\textrm{g}$/$m\ell$ daidzin and 60$\mu\textrm{g}$/$m\ell$ puerarin.n.

  • PDF

Protection Effects of Allylmercaptan, Metabolite of Garlic on Endothelial Cell Injury Induced by Oxidized Low Density Lipoprotein (산화된 low density lipoprotein (LDL)에 의해 유도된 내피세포의 손상에 대한 마늘 대사산물인 allylmercaptan의 보호 효과)

  • Yang, Seung-Taek
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1595-1602
    • /
    • 2010
  • Oxidation of low density lipoprotein (LDL) has been recognized as an important role in the initiation and progression of atherosclerosis. In this study, effects of allylmercaptan, a major metabolite compound of garlic, was studied on endothelial cell injury induced by oxidized low density lipoprotein (ox-LDL). The antioxidative activity of allylmercaptan was investigated by monitoring a thiobarbituric acid substance (TBARS). Allylmercaptan inhibited LDL oxidation induced by $Cu^{2+}$ at concentrations of 0.1, 1 and 10 mM in a dose dependent manner. Lactate dehydrogenase (LDH) release, as an index of cell injury, and intracellular glutathione levels were determined. Pulmonary artery endothelial cells were preincubated with allylmercaptan at $37^{\circ}C$ and 5% $CO_2$ for 24 hr, washed, and then exposed to 0.1 mg/ml oxidized LDL for 24 hr. Preincubation of endothelial cells with allylmercaptan significantly prevented the LDH release and depletion of GSH. Peroxides were measured directly in 24 well plates using a fluorometric assay. Allylmercaptan inhibited release of peroxides induced by ox-LDL in pulmonary artery endothelial cells. In a free system, allylmercaptan was shown to scavenge hydrogen peroxide. The data indicate that allylmercaptan can protect pulmonary artery endothelial cells from injury caused by oxidized LDL, and suggest that allylmercaptan may be useful for the prevention of atherosclerosis.

The Relationship between Daily Fructose Consumption and Oxidized Low-Density Lipoprotein and Low-Density Lipoprotein Particle Size in Children with Obesity

  • Gungor, Ali;Balamtekin, Necati;Ozkececi, Coskun Firat;Aydin, Halil Ibrahim
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.24 no.5
    • /
    • pp.483-491
    • /
    • 2021
  • Purpose: Obesity has become a very significant health problem in childhood. Fructose taken in an uncontrolled manner and consumed in excessive amounts is rapidly metabolized in the body and gets converted into fatty acids. This single center prospective case-control study aims to investigate the relationship between fructose consumption and obesity and the role of fructose consumption in development of atherosclerotic diseases. Methods: A total of 40 obese and 40 healthy children who were of similar ages (between 8 and 18 years) and sexes were included in the study. In the patient and control groups, the urine fructose levels, as well as the levels of oxidized low-density lipoprotein (LDL), small dense LDL, Apolipoprotein A and Apolipoprotein B values, which have been shown to play a role in development of atherosclerotic diseases, were measured. Results: The levels of oxidized LDL and small dense LDL and the ratio of Apolipoprotein A/Apolipoprotein B were found to be significantly higher in the patient group. Conclusion: We found that urinary fructose levels were higher in the obese children than the healthy children. Our results suggest that overconsumption of fructose in children triggers atherogenic diseases by increasing the levels of small dense LDL and oxidized LDL and the ratio of Apolipoprotein B/Apolipoprotein A.

Comparison of Body Composition and Serum Oxidized LDL Concentration between Middle-aged Women Exercising Aerobics and Sedentary (에어로빅댄스 수행과 비 운동 중년 여성의 신체 구성 및 혈청 Oxidized LDL 농도의 비교)

  • Ahn Chang-Soon
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.15 no.6
    • /
    • pp.675-686
    • /
    • 2005
  • It is known that appropriate exercise changes body composition and improves coronary artery disease. This study was undertaken to evaluate the relationships between aerobic exercise, body composition, and the blood lipid levels in the middle-aged women(33 to 54 years old). The 57 subjects were divided into two groups based on their exercise: the aerobic exercise group(A group: 44) which performed at about $60\%$ of $VO_2max$ during over 6 months and the sedentary one(S group: 13). The percentages of body fat waist/hip ratio(WHR), body mass, and lean body mass of two groups were measured and compared in serum HDLC level and oxidized LDL level, the two most effective factors of coronary artery disease. The subjects in A group showed the lower percentages of body fat and WHR, when compared with the ones in S group. The body mass and lean body mass of A group subjects were higher than those of S group subjects. The serum HDL-C level$(58.6\pm12.7mg/mL)$ was significantly higher for A than S group subjects.(p<0.05) The sem ox-LDL level $(6.64\pm4.11Eu/mL)$ for A group subjects was lower than S group ones. The fat mass showed significantly positive correlations with atherogenic index(AI)(r=0.301, p<0.05), and with blood glucose levels(r=0.334, p<0.05). Also the WHR whowed significantly positive correlations with LDL-C levels(r=0.277, p<0.05), and with AI(r=0.466, p<0.01). In summary, the subjects in A group have the lower percentages of body fat and WHR, when compared with the ones in S group. Also, A group subject showed a tendency that exercise enhances serum HDL-C levels and decreases oxidized LDL levels. And aerobic exercise showed positive results which change body composition and improve blood lipid levels. There were significantly positive correlations among the percentages of body fat At and blood glucose level. These results suggest that moderately intensive exercise is a significant factor in reducing coronary artery disease.

  • PDF

Effects of Samkieum on LDL Oxidation in Macrophage Cell (지단백산화(脂蛋白酸化)에 따른 대식세포(大食細胞) 활성(活性)에 미치는 삼기음(三氣飮)의 영향(影響))

  • Lee, Hee-Jo;Hwang, Gwi-Seo;Kim, Kyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.19 no.2
    • /
    • pp.108-117
    • /
    • 2006
  • The oxidative notification of low density lipoprotein(LDL) has been implicated in the development of atherosclerosis. Oxidized LDL are found in macrophage foam cell, and it can induce an macrophage proliferation in atherosclerotic plaque. In this study, we investigated the hypothesis that Samkieum may reduce atherosclerosis by lowering the oxidiazability of LDL, To achieve this goal, we examined the effect of Samkieum on LDL oxidation nitric oxide production in mouse macrophage cell line, RAW264.7, and the effect of Samkieum on cupuric sulfate-induced cytotoxicity, LDH release, and macrophage activity. Samkieum inhibited the generation of oxidized LDL from native LDL in RAW264.7 cell culture, and decreased the release of LDH from cupric sulfate-stimulated RAW264.7 cell. In other experiments, Samkieum activated RAW264.7 cell, and prolonged the survival time, and increased nitric oxide production in Raw 264.7 cells.

  • PDF

Effects of Gamisoyosan(GS) on LDL Oxidation in RAW 264.7 Cell. (가미소요산(加味逍遙散)이 지단백산화(脂蛋白酸化)에 따른 RAW 264.7 활성(活性)에 미치는 영향(影響))

  • Hwang Gwi-Seo
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.5 no.1
    • /
    • pp.134-143
    • /
    • 2001
  • The oxidative modification of low density lipoprotein(LDL) has been implicated in the development of atherosclerosis. Oxidized LDL are found in macrophage foam cell, and it can induce an macrophage proliferation in atherosclerotic plaque. In this study, we investigated the hypothesis that gamisoyosan(GS) may reduce atherosclerosis by lowering the oxidiazability of LDL, To achive this goal, we examined the effect of GS on LDL oxidation, nitric oxide production in mouse macrophage cell line, RAW264.7, and the effect of GS on cupuric sulfate-induced cytotoxicity, LDH release, and macrophage activity. GS inhibited the generation of oxidized LDL from native LDL in RAW264.7 cell culture, and decreased the release of LDH from cupric sulfate-stimulated RAW264.7 cell. In other experiments, GS activated RAW264.7 cell, and prolonged the survival time, and increased nitric oxide production in Raw 264.7 cells.

  • PDF

Effects of Lipid Peroxidation of LDL and Lp(a)

  • Shim, Young-Hee;Kim, Tae-Woong
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.93-98
    • /
    • 1996
  • Lipopretein(a)[Lp(a)] is a macromolecular complex found in human plasma that combines structural elements composed of LDL and apo(a), and that is associated with premature coronary heart disease and stroke. In this study, various samples which consisted of normal and abnormal LDL and LP(a) were selected for compar-ison. The above samples were incubated with copper in order to oxidize and to compare atheroma formation, in vitro and free radical formation of Lp(a) was decreased compared to purified LDl. And LDL or Lp(a) from a 40 year old donor was higher in the free radical formation than that fro, a 20 years old donor. In order to investigate the macrophage foam cell formation, oxidized LDL of Lp(a) was incubated with human monocyte derived macrophage(HMDM). Oxidized samples enhanced on acceptability f foam cell formation by HMDM were compared to the control group. Also, structural change of LDL and Lp(a) against oxidation times were found from HPLC mapping.

  • PDF