• Title/Summary/Keyword: Oxide properties

Search Result 4,483, Processing Time 0.034 seconds

The Deposition and Characterization of Electrochromic Tungsten Oxide Thin Films (산화텅스텐 박막의 제조 및 전기변색 특성)

  • 하승호;이진민;박승희;조봉희;김영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.120-123
    • /
    • 1993
  • This paper describes the deposition and characteristics of electrochromic tungsten oxide thin films for electrochromic smart windows. Tungsten Oxide thin films(WO$_3$) are deposited by thermal evaporation techniques. By varying deposition parameters, WO$_3$ thin films exhibit different optical properties. The electrochromic devices are consist of ITO glass/ WO$_3$ thin films/ LiClO$_4$-propylene carbonate electrolyte/ counter electrode. The electrochromic properties of tungsten oxide thin films with different deposition condition ale investigated.

  • PDF

Properties and Applications of Graphite Oxides

  • Jeong, Hye-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.59-59
    • /
    • 2010
  • Graphene has attracted much interest because of its fascinating electronic structure with excellent electron mobility. However, there are some difficulties in making graphene of large and uniform area for real applications. One alternative is graphite oxide. Since graphite oxide is water soluble, it can be sprayed or spin-coating onto any substrates for applications such as Transparent Conducting Film (TCF) and Field Effect Transistor (FET). In this talk, chemical and physical properties of graphite oxide will be discussed. In addition, possible applications made of graphite oxide (GO) will be introduced.

  • PDF

A Study of the Effect of Tungsten Oxide on W, WC Powder and Alloy Properties

  • Jiang, Cijin;Shen, Paul;Wang, Huan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.654-655
    • /
    • 2006
  • This is about the effects deoxidization, carbonization and alloying preparation on fine grain W, WC, and grade YG8 powder reduced by "yellow tungsten oxide" and "blue tungsten oxide". The result indicates that yellow tungsten has single composition and blue tungsten oxide has complex composition. With this feature, yellow tungsten oxide got better uniformity and concentration distribution on fine particle size W and WC powder than blue tungsten oxide's. The grade alloy YG8 that made of this W or WC powder has uniform alloy construction, concentrated WC grain distribution and better alloy properties.

  • PDF

Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus

  • Kasraei, Shahin;Sami, Lida;Hendi, Sareh;AliKhani, Mohammad-Yousef;Rezaei-Soufi, Loghman;Khamverdi, Zahra
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.2
    • /
    • pp.109-114
    • /
    • 2014
  • Objectives: Recurrent caries was partly ascribed to lack of antibacterial properties in composite resin. Silver and zinc nanoparticles are considered to be broad-spectrum antibacterial agents. The aim of the present study was to evaluate the antibacterial properties of composite resins containing 1% silver and zinc-oxide nanoparticles on Streptococcus mutans and Lactobacillus. Materials and Methods: Ninety discoid tablets containing 0%, 1% nano-silver and 1% nano zinc-oxide particles were prepared from flowable composite resin (n = 30). The antibacterial properties of composite resin discs were evaluated by direct contact test. Diluted solutions of Streptococcus mutans (PTCC 1683) and Lactobacillus (PTCC 1643) were prepared. 0.01 mL of each bacterial species was separately placed on the discs. The discs were transferred to liquid culture media and were incubated at $37^{\circ}C$ for 8 hr. 0.01 mL of each solution was cultured on blood agar and the colonies were counted. Data was analyzed with Kruskall-Wallis and Mann-Whitney U tests. Results: Composites containing nano zinc-oxide particles or silver nanoparticles exhibited higher antibacterial activity against Streptococcus mutans and Lactobacillus compared to the control group (p < 0.05). The effect of zinc-oxide on Streptococcus mutans was significantly higher than that of silver (p < 0.05). There were no significant differences in the antibacterial activity against Lactobacillus between composites containing silver nanoparticles and those containing zinc-oxide nanoparticles. Conclusions: Composite resins containing silver or zinc-oxide nanoparticles exhibited antibacterial activity against Streptococcus mutans and Lactobacillus.

The AC Breakdown Properties of Gate Oxide Layer in MOSFET (MOSFET에서 Gate Oxide층의 교류 절연파괴 특성)

  • Park, Jung-Goo;Song, Jung-Woo;Ko, Si-Hyoen;Cho, Kyung-Soon;Shin, Jong-Yeol;Lee, Yong-Woo;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.941-943
    • /
    • 1999
  • In this paper, the AC breakdown properties to investigate the electrical properties of gate oxide layer in MOSFET was studied. 5 inch arsenic epi-wafer is selected as an experimental specimen, the power MOSFET of a general MOS structure was made. In order to analyze the physical properties of the specimen, the SIMS(secondary ion mass spectroscopy) was used. As the experimental condition, the experiment al of the AC breakdown characteristics was performed when the thickness of gate oxide layer is $600[\AA]$ and $800[\AA]$, the resistivity is $1.2[\Omega{\cdot}cm]$, $1.5[\Omega{\cdot}cm]$ and $1.8[\Omega{\cdot}cm]$, and the diffusion time is 110[min] and 150[min] in temperature $30[^{\circ}C]{\sim}100[^{\circ}C]$. From the analysis result of the SIMS spectrum, it is confirmed that the dielectric strength is decreased by contribution of the impurities ad dition as increasing in thickness of the gate oxide layer in MOSFET.

  • PDF

Fabrication, Optoelectronic and Photocatalytic Properties of Some Composite Oxide Nanostructures

  • Zou, C.W.;Gao, W.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • This is an overview paper reporting our most recent work on processing and microstructure of nano-structured oxides and their photoluminescence and photo-catalysis properties. Zinc oxide and related transition metal oxides such as vanadium pentoxide and titanium dioxide were produced by a combination of magnetron sputtering, hydrothermal growth and atmosphere controlled heat treatment. Special morphology and microstructure were created including nanorods arrays, core-brushes, nano-lollipops and multilayers with very large surface area. These structures showed special properties such as much enhanced photoluminescence and chemical reactivity. The photo-catalytic properties have also been promoted significantly. It is believed that two factors contributed to the high reactivity: the large surface area and the interaction between different oxides. The transition metal oxides with different band gaps have much enhanced photoluminescence under laser stimulation. Use of these complex oxide structures as electrodes can also improve the energy conversion efficiency of solar cells. The mixed oxide complex may provide a promising way to high-efficiency photo emitting materials and photo-catalysts.

Study on the shielding performance of bismuth oxide as a spent fuel dry storage container based on Monte Carlo simulation

  • Guo-Qiang Zeng;Shuang Qi;Peng Cheng;Sheng Lv;Fei Li;Xiao-Bo Wang;Bing-Hai Li;Qing-Ao Qin
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3307-3314
    • /
    • 2024
  • For traditional spent fuel shielding materials, due to physical and chemical defects and cost constraints, they have been unable to meet the needs. Therefore, this paper carries out the first discussion on the application and performance of bismuth in neutron shielding by establishing Monte Carlo simulation on the neutron flux model of shielded spent fuel. Firstly, functional fillers such as bismuth oxide, lead oxide, boron oxide, gadolinium oxide and tungsten oxide are added to the matrices to compare the shielding rates of aluminum alloy matrix and silicone rubber matrix. The shielding rate of silicone rubber mixture is higher than aluminum alloy mixture, reaching more than 56%. The optimal addition proportion of bismuth oxide and lead oxide is 30%, and the neutron radiation protection efficiency reaches 60%. Then, the mass attenuation coefficients of bismuth oxide, lead oxide, boron oxide, gadolinium oxide and tungsten oxide in silicone rubber matrix are simulated with the change of functional fillers proportion and neutron energy. This simulation result shows that the mixture with functional fillers has good shielding performance for low energy neutrons, but poor shielding effect for high energy neutrons. Finally, in order to further evaluate the possibility of replacing lead oxide with bismuth oxide as shielding material, the half-value layers and various properties of bismuth oxide and lead oxide are compared. The results show that the shielding properties of bismuth oxide and lead oxide are basically the same, and the mechanical properties, heat resistance, radiation resistance and environmental protection of bismuth oxide are better than that of lead oxide. Therefore, in the case of neutron source strengths in the range of 0.01-6 MeV and secondary gamma rays produced below 2.5 MeV, bismuth can replace lead in neutron shielding applications.

A STUDY ON THE MARGINAL LEAKAGE OF ENDODONTIC CAVITY FILLING MATERIALS (근관와동 가봉재의 변연누출에 관한 실험적 연구)

  • Nho, Cheol-Jin;Lim, Sung-Sam
    • Restorative Dentistry and Endodontics
    • /
    • v.12 no.2
    • /
    • pp.17-23
    • /
    • 1987
  • The purpose of this study was to evaluate the sealing properties of endodontic cavity filling materials according to the time intervals after filling. Access cavities were prepared in extracted human premolar or molar teeth and filled with caviton, zinc oxide eugenol cement, zinc oxide eugenol cement with a base of gutta percha stopping and gutta percha stopping. After filling at the intervals of immediate, 2 days and 2 weeks the teeth were immersed for 2 weeks in 1% methylene blue solutions. Longitudinal sections were obtained from approximately center of teeth and the depth of dye penetration into the access cavities were observed by 10${\times}$macrolens. The following results were obtained. I. All the materials experimented showed varying depth of dye penetration. 2. Of the material tested, caviton showed the best marginal sealing qualities regardless of the time intervals after filling and the sealing properties of the gutta percha stopping was the worst. 3. Both in zinc oxide eugenol cement and zinc oxide eugenol cement with a base of gutta percha stopping, the fillings allowed to mature for 2 days in normal saline solution showed the best sealing properties and those with no maturing time revealed the worst sealing qualities. 4. The sealing qualities of zinc oxide eugenol cement with a base of gutta percha stopping revealed slightly lower depth of dye penetration than that of zinc oxide eugenol cements.

  • PDF

The Study on Properties of AAO(Anodic Aluminum Oxide) Structures with Hole Effect (Hole effect를 고려한 AAO(Anodic Aluminum Oxide) 구조물의 물성치에 대한 연구)

  • 고성현;이대웅;지상은;박현철;이건홍;황운봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.186-193
    • /
    • 2004
  • Porous anodic alumina has been used widely for corrosion protection of aluminum surfaces or as dielectric material in micro-electronics applications. It exhibits a homogeneous morphology of parallel pores which can easily be controlled between 10 and 400nm. It has been applied as a template for fabrication of the nanometer-scale composite. In this study, mechanical properties of the AAO structures are measured by the nano indentation method. Nano indentation technique is one of the most effective methods to measure the mechanical properties of nano-structures. Basically, hardness and elastic modulus can be obtained by the nano-indentation. Using the nano-indentation method, we investigated the mechanical properties of the AAO structure with different size of nano-holes. In results, we find the hole effect that changes the mechanical properties as size of nano hole.

Enhancement of Thermomechanical Properties of Poly(D, L-lactic-co-glycolic acid) and Graphene Oxide Composite Films for Scaffolds

  • Yoon, Ok-Ja;Sohn, Il-Yung;Kim, Duck-Jin;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.548-548
    • /
    • 2012
  • Thermomechanical and surface chemical properties of composite films of poly(D, L-lactic-co-glycolic acid) (PLGA) were significantly improved by the addition of graphene oxide (GO) nanosheets as nanoscale fillers to the PLGA polymer matrix. Enhanced thermomechanical properties of the PLGA/GO (2 wt.%) composite film, including an increase in the crystallization temperature and reduction in the weight loss, were observed. The tensile modulus of a composite film with increased GO fraction was presumably enhanced due to strong chemical bonding between the GO nanosheets and PLGA matrix. Enhanced hydrophilicity of the composite film due to embedded GO nanosheets also improved the biocompatibility of the composite film. Improved thermomechanical properties and biocompatibility of the PLGA composite films embedded with GO nanosheets may be applicable to biomedical applications such as scaffolds.

  • PDF