• Title/Summary/Keyword: Oxide electrode

Search Result 1,140, Processing Time 0.038 seconds

BIocompatible Reduced Graphene Oxide Multilayers for Neural Interfaces

  • Kim, Seong-Min;Ju, Pil-Jae;An, Guk-Mun;Kim, Byeong-Su;Yun, Myeong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.278.1-278.1
    • /
    • 2013
  • Among the prerequisites for stable neural interfacing are the long-term stability of electrical performance of and the excellent biocompatibility of conducting materials in implantable neural electrodes. Reduced graphene oxide offers a great potential for a variety of biomedical applications including biosensors and, particularly, neural interfaces due to its superb material properties such as high electrical conductivity, decent optical transparency, facile processibility, and etc. Nonetheless, there have been few systematic studies on the graphene-based neural interfaces in terms of biocompatibility of electrode materials and long term stability in electrical characteristics. In this research, we prepared the primary culture of rat hippocampal neurons directly on reduced graphene oxide films which is chosen as a model electrode material for the neural electrode. We observed that the viability of primary neuronal culture on the present structure is minimally affected by nanoscale graphene flakes below. These results implicate that the multilayer films of reduced graphene oxides can be utilized for the next-generation neural interfaces with decent biocompatibility and outstanding electrical performance.

  • PDF

Improvement of Repeatability during Dielectric Etching by Controlling Upper Electrode Temperature (Capacitively Coupled Plasma Source를 이용한 Etcher의 상부 전극 온도 변화에 따른 Etch 특성 변화 개선)

  • Shin, Han-Soo;Roh, Yong-Han;Lee, Nae-Eung
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.322-326
    • /
    • 2011
  • Etch process of silicon dioxide layer by using capacitively coupled plasma (CCP) is currently being used to manufacture semiconductor devices with nano-scale feature size below 50 nm. In typical CCP plasma etcher system, plasmas are generated by applying the RF power on upper electrode and ion bombardment energy is controlled by applying RF power to the bottom electrode with the Si wafer. In this case, however, etch results often drift due to heating of the electrode during etching process. Therefore, controlling the temperature of the upper electrode is required to obtain improvement of etch repeatability. In this work, we report repeatability improvement during the silicon dioxide etching under extreme process conditions with very high RF power and close gap between upper and bottom electrodes. Under this severe etch condition, it is difficult to obtain reproducible oxide etch results due to drifts in etch rate, critical dimension, profile, and selectivity caused by unexpected problems in the upper electrode. It was found that reproducible etch results of silicon dioxide layer could be obtained by controlling temperature of the upper electrode. Methods of controlling the upper electrode and the correlation with etch repeatability will be discussed in detail.

Sputtered ZTO as a blocking layer at conducting glass and $TiO_2$ Interfaces in Dye-Sensitized Solar Cells (GZO/ZTO 투명전극을 이용한 DSSC의 광전 변환 효율 특성)

  • Park, Jaeho;Lee, Kyungju;Song, Sangwoo;Jo, Seulki;Moon, Byungmoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • Dye-sensitized solar cells(DSSCs) have been recognized as an alternative to the conventional p-n junction solar cells because of their simple fabrication process, low production cost, and transparency. A typical DSSC consists of a transparent conductive oxide (TCO) electrode, a dye-sensitized oxide semiconductor nanoparticle layer, liquid redox electrolyte, and a Pt-counter electrode. In dye-sensitized solar cells, charge recombination processes at interfaces between coducting glass, $TiO_2$, dye, and electrolyte play an important role in limiting the photon-to-electron conversion efficiency. A layer of ZTO thin film less than ~200nm in thickness, as a blocking layer, was deposited by DC magnetron sputtering method directly onto the anode electrode to be isolated from the electrolyte in dye-sensitized solar cells(DSCs). This is to prevent the electrons from back-transferring from the electrode to the electrolyte ($I^-/I_3^-$). The presented DSCs were fabricated with working electrode of Ga-doped ZnO glass coated with blocking ZTO layer, dye-attached nanoporous $TiO_2$ layer, gel electrolyte and counter electrode of Pt-deposited GZO glass. The effects of blocking layer were studied with respect to impedance and conversion efficiency of the cells.

  • PDF

Characterization of a LSCF/GDC Cathode Composite in Solid Oxide Fuel Cells Using Impedance Spectroscopy

  • Hwang, Jin-Ha;Lee, Byung-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.793-799
    • /
    • 2005
  • A composite cathode of LSCF$(La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3)\;and\;GDC\; (Gd_2O_3-doped\;CeO_2:Ce_{0.9}Gd_{0.1}O_{1.95_})$ was characterized in terms of an electrode response, using a point contact in an Yttria-Stabilized Zirconia (YSZ) electrolyte incorporated into AC two-point impedance spectroscopy. The point-contacted configuration amplifies the responses occurring near the YSZ/cathode interface through the aligned point contact on the planar LSCF/GDC electrode. The point contact interface increases the bulk resistance allowing the estimation of the point contact geometry and resolving the electrode-related responses. The resultant impedance spectra are analyzed through an equivalent circuit model constructed by resistors and constant phase elements. The bulk responses can be resolved from the electrode-related portions in terms of spreading resistance. The electrode-related polarizations are measured in terms of temperature and oxygen partial pressure. The modified impedance spectroscopy is discussed in terms of methodology and analytical aspects, toward resolving the electrode-polarization issues in solid oxide fuel cells.

Voltammetric Behaviors of Chemically Modified Electrodes Based on Zirconium Phosphonate Film

  • 홍훈기
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.886-891
    • /
    • 1995
  • Electroactive monolayers based on zirconium(Ⅳ) phosphonate film were prepared on gold and tin oxide electrodes by sequential layer-by-layer depostion technique. High transfer coefficient values and surface coverages of surface bound redox molecules were obtained from the electrochemical measurements of heterogeneous electron transfer rates for monolayer modified electrodes. 1,10-Decanediylbis(phosphonic acid) (DBPA) monolayer as insulating barrier was effective in blocking electron transfer. However, these film modified oxide electrode shows voltammetric behavior of diffusion/permeation process taking place at very small exposed area of modified electrode through channels due to structural defects within film when a very fast redox couple such as Ru(NH3)63+ is hired.

Disposable Microchip-Based Electrochemical Detector Using Polydimethylsiloxane Channel and Indium Tin Oxide Electrode (Polydimethylsiloxane 채널과 indium tin oxide 전극을 이용한 일회용 전기화학적 검출 시스템)

  • Yi In-Je;Kang Chi-Jung;Kim Yong-Sang;Kim Ju-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.5
    • /
    • pp.227-231
    • /
    • 2005
  • We have developed a microsystem with a capillary electrophoresis (CE) and an electrochemical detector (ECD). The microfabricated CE-ECD systems are adequate for a disposable type and the characteristics are optimized for an application to the electrochemical detection. The system was realized with polydimethylsiloxane (PDMS)-glass chip and indium tin oxide electrode. The injection and separation channels (80 um wide$\ast$40 um deep) were produced by moulding a PDMS against a microfabricated master with relatively simple and inexpensive methods. A CE-ECD systems were fabricated on the same substrate with the same fabrication procedure. The surface of PDMS layer and ITO-coated glass layer was treated with UV-Ozone to improve bonding strength and to enhance the effect of electroosmotic flow. For comparing the performance of the ITO electrodes with the gold electrodes, gold electrode microchip was fabricated with the same dimension. The running buffer was prepared by 10 mM 2-(N-morpholino)ethanesulfonic acid (MES) titrated to PH 6.5 using 0.1 N NaOH. We measured olectropherograms for the testing analytes consisted of catechol and dopamine with the different concentrations of 1 mM and 0.1 mM, respectively. The measured current peaks of dopamine and catechol are proportional to their concentrations. For comparing the performance of the ITO electrodes with the gold electrodes, electropherograms was measured for CE-ECD device with gold electrodes under the same conditions. Except for the base current level, the performances including sensitivity, stability, and resolution of CE-ECD microchip with ITO electrode are almost the same compared with gold electrode CE-ECD device. The disposable CE/ECD system showed similar results with the previously reported expensive system in the limit of detection and peak skew. When we are using disposable microchips, it is possible to avoid polishing electrode and reconditioning.

The Effect of Sputtering Conditions on the Electrochromic Properties of Titanium Oxide Thin Films (스퍼터링 조건이 티탄산화물박막의 전기적 착색 특성에 미치는 영향)

  • Lee, Kil-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.55-61
    • /
    • 2006
  • Titanium oxide ($TiO_2$) films are deposited on the indium tin oxide (ITO) substrate in an $Ar/O_2$ atmosphere by using reactive RF (Radio Frequency) magnetron sputtering technique, and Electrochromic properties and durability of $TiO_2$ films deposited at different preparation conditions are investigated by using UV-VIS spectrophotometer and cyclic voltammetry Li+ interalation/deintercalation in $TiO_2$ films shows that the electrochromic properties and durability of as-deposited films strongly depend on gas pressure $TiO_2$ films formed in our sputtering conditions are found to remain transparent, irrespective of their Li+ ion contents. The optimum sputtering conditions for film as passive counter electrode in electrochromic devices are working pressure of $1.0\;{\times}\;10^{-2}\;torr$ and oxygen flow raes of $10{\sim}15\;sccm$, respectively.

Template Synthesis of $Ni(OH)_2$ nanowires by Electrochemical Process

  • Zhang, Wentao;Beili, Pang;Lee, Hong-Ro
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.68-68
    • /
    • 2008
  • There are several methods for oxide coating on metals, such as aluminum or carbon nanotubes(CNTs). Usually CVD method is introduced for various oxide coating on CNTs. Another method is electrochemical method which use potential-pH diagram for oxide coating on metal or CNTs. In this experiment, electrochemical coating parameter for oxide coating on aluminum template modified by acids and hydrogen peroxide ($H_2O_2$) were examined. SEM micrographs displayed clearly $Ni(OH)_2$ coating on template. For confirmation of electrochemical method application to EDLC electrode material fabrication, EDS spectrum was analyzed.

  • PDF

High-Performance, Fully-Transparent and Top-Gated Oxide Thin-Film Transistor with High-k Gate Dielectric

  • Hwang, Yeong-Hyeon;Cho, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.276-276
    • /
    • 2014
  • High-performance, fully-transparent, and top-gated oxide thin-film transistor (TFT) was successfully fabricated with Ta2O5 high-k gate dielectric on a glass substrate. Through a self-passivation with the gate dielectric and top electrode, the top-gated oxide TFT was not affected from H2O and O2 causing the electrical instability. Heat-treated InSnO (ITO) was used as the top and source/drain electrode with a low resistance and a transparent property in visible region. A InGaZnO (IGZO) thin-film was used as a active channel with a broad optical bandgap of 3.72 eV and transparent property. In addition, using a X-ray diffraction, amorphous phase of IGZO thin-film was observed until it was heat-treated at 500 oC. The fabricated device was demonstrated that an applied electric field efficiently controlled electron transfer in the IGZO active channel using the Ta2O5 gate dielectric. With the transparent ITO electrodes and IGZO active channel, the fabricated oxide TFT on a glass substrate showed optical transparency and high carrier mobility. These results expected that the top-gated oxide TFT with the high-k gate dielectric accelerates the realization of presence of fully-transparent electronics.

  • PDF