• 제목/요약/키워드: Oxide dispersion strengthening

검색결과 15건 처리시간 0.017초

열화학적 방법에 의한 전극용 나노 Cu/Al2O3 복합분말 합성 (Synthesis of Cu/Al2O3 Nanostructured Composite Powders for Electrode Application by Thermochemical Process)

  • 이동원;배정현;김병기
    • 한국분말재료학회지
    • /
    • 제10권5호
    • /
    • pp.337-343
    • /
    • 2003
  • Nanostructured Cu-$Al_2O_3$ composite powders were synthesized by thermochemical process. The synthesis procedures are 1) preparation of precursor powder by spray drying of solution made from water-soluble copper and aluminum nitrates, 2) air heat treatments to evaporate volatile components in the precursor powder and synthesis of nano-structured CuO + $Al_2O_3$, and 3) CuO reduction by hydrogen into pure Cu. The suggested procedures stimulated the formation of the gamma-$Al_2O_3$, and different alumina formation behaviors appeared with various heat treating temperatures. The mean particle size of the final Cu/$Al_2O_3$ composite powders produced was 20 nm, and the electrical conductivity and hardness in the hot-extruded bulk were competitive with Cu/$Al_2O_3$ composite by the conventional internal oxidation process.

Enhanced mechanical properties and interface structure characterization of W-La2O3 alloy designed by an innovative combustion-based approach

  • Chen, Pengqi;Xu, Xian;Wei, Bangzheng;Chen, Jiayu;Qin, Yongqiang;Cheng, Jigui
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1593-1601
    • /
    • 2021
  • Oxide dispersion strengthening (ODS) tungsten alloys are highly desirable in irradiation applications. However, how to improve the properties of ODS-tungsten alloys efficiently has been worth studying for a long time. Here we report a nanostructuring approach that achieves W-La2O3 alloy with a high level of flexural strength and Vickers hardness at room temperature, which have the maximum value of 581 MPa and 703 Hv, respectively. This method named solution combustion synthesis (SCS) can generate 30 nm coating structures W-La2O3 composite powders by using Keggin-type structural polyoxometalates as raw materials in a fast and low-cost process. The composite powder can be fabricated to W-La2O3 alloy with an optimal microstructure of submicrometric W grains coexisting with nanometric oxide particles in the grain interior, and a stability interface structure of grain boundaries (GBs) by forming transition zones. The method can be used to prepare new ODS alloys with excellent properties in the future.

Experimental study of graphene oxide on wollastonite induced cement mortar

  • Sairam, V.;Shanmugapriya, T.;Jain, Chetan;Agrahari, Himanshu Kumar;Malpani, Tanmay
    • Advances in concrete construction
    • /
    • 제12권6호
    • /
    • pp.479-490
    • /
    • 2021
  • Present research is mainly focused on, microstructural and durability analysis of Graphene Oxide (GO) in Wollastonite (WO) induced cement mortar with silica fume. The study was conducted by evaluating the mechanical properties (compressive and flexural strength), durability properties (water absorption, sorptivity and sulphate resistance) and microstructural analysis by SEM. Cement mortar mix prepared by replacing 10% ordinary portland cement with SF was considered as the control mix. Wollastonite replacement level varied from 0 to 20% by weight of cement. The optimum replacement of wollastonite was found to be 15% and this was followed by four sets of mortar specimens with varying substitution levels of cementitious material with GO at dosage rates of 0.1%, 0.2%, 0.3% and 0.4% by weight. The results indicated that the addition of up to 15%WO and 0.3% GO improves the hydration process and increase the compressive strength and flexural strength of the mortar due to the pore volume reduction, thereby strengthening the mortar mix. The resistance to water penetration and sulphate attack of mortar mixes were generally improved with the dosage of GO in presence of 15% Wollastonite and 10% silica fume content in the mortar mix. Furthermore, FE-SEM test results showed that the WO influences the lattice framework of the cement hydration products increasing the bonding between silica fume particles and cement. The optimum mix containing 0.3% GO with 15% WO replacement exhibited extensive C-S-H formation along with a uniform densified structure indicating that calcium meta-silicate has filled the pores.

분말 제조 방법에 따른 Ni-Y2O3 소결 합금의 미세 구조 및 기계적 특성 평가 (Evaluation of Microstructures and Mechanical Properties of Ni-Y2O3 Sintered Alloys Based on the Powder Preparation Methods)

  • 정건우;차지호;장민서;오민석;박제신
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.484-492
    • /
    • 2023
  • In this study, Ni-Y2O3 powder was prepared by alloying recomposition oxidation sintering (AROS), solution combustion synthesis (SCS), and conventional mechanical alloying (MA). The microstructure and mechanical properties of the alloys were investigated by spark plasma sintering (SPS). Among the Ni-Y2O3 powders synthesized by the three methods, the AROS powder had approximately 5 nm of Y2O3 crystals uniformly distributed within the Ni particles, whereas the SCS powder contained a mixture of Ni and Y2O3 nanoparticles, and the MA powder formed small Y2O3 crystals on the surface of large Ni particles by milling the mixture of Ni and Y2O3. The average grain size of Y2O3 in the sintered alloys was approximately 15 nm, with the AROS sinter having the smallest, followed by the SCS sinter at 18 nm, and the MA sinter at 22 nm. The yield strength (YS) of the SCS- and MA-sintered alloys were 1511 and 1688 MPa, respectively, which are lower than the YS value of 1697 MPa for the AROS-sintered alloys. The AROS alloy exhibited improved strength compared to the alloys fabricated by SCS and conventional MA methods, primarily because of the increased strengthening from the finer Y2O3 particles and Ni grains.

MICROSTRUCTURAL EVOLUTION OF A HIGH CR FE-BASED ODS ALLOY BY DIFFERENT COOLING RATES

  • Shen, Yin-Zhong;Cho, Hae-Dong;Jang, Jin-Sung
    • Nuclear Engineering and Technology
    • /
    • 제40권2호
    • /
    • pp.99-106
    • /
    • 2008
  • Through mechanical alloying, hot isostatic pressing and hot rolling, a 9%Cr Fe-based oxide dispersion-strengthened alloy sample was fabricated. The tensile strength of the alloy is significantly improved when the microstructure is modified during the post-consolidation process. The alloy samples were strengthened as the cooling rates increased, though the elongation was somewhat reduced. With a cooling rate of $800^{\circ}C/s$ after normalization at $1150^{\circ}C$, the alloy sample showed a tensile strength of 1450 MPa, which is about twice that of the hot rolled sample; however, at $600^{\circ}C$ the tensile strength dramatically decreased to 620 MPa. Optical microscope and transmission electron microscope were used to investigate the microstructural changes of the specimens. The resultant strengthening of the alloy sample could be mainly attributed to the interstitially dissolved nitrogen, the fraction of the tempered martensite, the fine grain and the presence of a smaller precipitate. The decrease in the tensile strength was mainly caused by the precipitation of vanadium-rich nitride.