• 제목/요약/키워드: Oxidative species

검색결과 1,325건 처리시간 0.028초

Oxidative stress on anaerobes

  • Takeuchi, Toru;Shi, Minyi;Kato, Naoki;Watanabe, Kunitomo;Morimoto, Kanehisa
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.142-145
    • /
    • 2002
  • A strict anaerobe, Prevotella melaninogenica is highly sensitive to oxidative stress. Oxidative stress such as exposure to oxygen or addition of hydrogen peroxide, increased 8-hydroxydeoxyguanosine (80HdG), a typical of oxidative DNA damage, and decreased the bacterial cell survival rate. We could detect the generation of reactive oxygen species in P. melaninogenica after exposure to oxygen. UVA irradiation also increased 80HdG in the bacterium. On the other hand, such oxidative stress did not increase 80HdG in a facultative anaerobe. These findings suggest that P. melaninogenica is a suitable material to study the biological effects of oxidative stress, to evaluate antioxidants, and to study the effects of oxygen or reactive oxygen species on molecular evolution.

  • PDF

Rhamnazin inhibits LPS-induced inflammation and ROS/RNS in raw macrophages

  • Kim, You Jung
    • Journal of Nutrition and Health
    • /
    • 제49권5호
    • /
    • pp.288-294
    • /
    • 2016
  • Purpose: The aim of this work was to investigate the beneficial effects of rhamnazin against inflammation, reactive oxygen species (ROS)/reactive nitrogen species (RNS), and anti-oxidative activity in murine macrophage RAW264.7 cells. Methods: To examine the beneficial properties of rhamnazin on inflammation, ROS/ RNS, and anti-oxidative activity in the murine macrophage RAW264.7 cell model, several key markers, including COX and 5-LO activities, $NO^{\cdot}$, $ONOO^-$, total reactive species formation, lipid peroxidation, $^{\cdot}O_2$ levels, and catalase activity were estimated. Results: Results show that rhamnazin was protective against LPS-induced cytotoxicity in macrophage cells. The underlying action of rhamnazin might be through modulation of ROS/RNS and anti-oxidative activity through regulation of total reactive species production, lipid peroxidation, catalase activity, and $^{\cdot}O_2$, $NO^{\cdot}$, and $ONOO^{\cdot}$ levels. In addition, rhamnazin down-regulated the activities of pro-inflammatory COX and 5-LO. Conclusion: The plausible action by which rhamnazin renders its protective effects in macrophage cells is likely due to its capability to regulate LPS-induced inflammation, ROS/ RNS, and anti-oxidative activity.

Roles of Oxidative Stress in the Development and Progression of Breast Cancer

  • Nourazarian, Ali Reza;Kangari, Parisa;Salmaninejad, Arash
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권12호
    • /
    • pp.4745-4751
    • /
    • 2014
  • Oxidative stress is caused by an imbalance in the redox status of the body. In such a state, increase of free radicals in the body can lead to tissue damage. One of the most important species of free radicals is reactive oxygen species (ROS) produced by various metabolic pathways, including aerobic metabolism in the mitochondrial respiratory chain. It plays a critical role in the initiation and progression of various types of cancers. ROS affects different signaling pathways, including growth factors and mitogenic pathways, and controls many cellular processes, including cell proliferation, and thus stimulates the uncontrolled growth of cells which encourages the development of tumors and begins the process of carcinogenesis. Increased oxidative stress caused by reactive species can reduce the body's antioxidant defense against angiogenesis and metastasis in cancer cells. These processes are main factors in the development of cancer. Bimolecular reactions cause free radicals in which create such compounds as malondialdehyde (MDA) and hydroxyguanosine. These substances can be used as indicators of cancer. In this review, free radicals as oxidizing agents, antioxidants as the immune system, and the role of oxidative stress in cancer, particularly breast cancer, have been investigated in the hope that better identification of the factors involved in the occurrence and spread of cancer will improve the identification of treatment goals.

Oxidative Stress and Antioxidant Activities of Intertidal Macroalgae in Korea

  • Park, Jung-Jin;Han, Tae-Jun;Choi, Eun-Mi
    • Preventive Nutrition and Food Science
    • /
    • 제16권4호
    • /
    • pp.313-320
    • /
    • 2011
  • The oxidative stress level and antioxidant activities in two green algae (Ulva pertusa and Ulva linza), two brown algae (Agarum cribrosum and Dictyota dichotoma), and three red algae (Grateloupia lanceolata, Carpopeltis affinis, and Gracilaria verrucosa) collected from intertidal regions of Korea were assessed. In the two green algae, although the total glutathione content was not as high as that of the brown algae, the glutathione pool was extremely reduced, and the glutathione reductase (GRd)/glutathione peroxidase (GPx) activity ratio was high, which apparently plays an important role for protection against oxidative damage, as manifested by low lipid peroxidation. In the brown algae, which exhibited a low lipid peroxidation level that was comparable to the green algal species, the highest glutathione content, together with high GPx activity, appears to be the most important factor in their antioxidant protection. The red algal species exhibited extremely high lipid peroxidation levels. They also contained the lowest and most oxidized glutathione among the species, as well as the lowest GRd activity. In spite of the marked difference in the glutathione content, the significant difference in the activity of ${\gamma}$-glutamylcysteine ligase, the rate limiting enzyme for glutathione synthesis, among the species was not exhibited. Our results suggest that there is a significant difference in the levels of oxidative stress and antioxidant capacity among the algal species, and that the glutathione system, especially the efficiency of glutathione recycling, plays a vital role in antioxidative protection in algal species.

Can antioxidants be effective therapeutics for type 2 diabetes?

  • Park, Soyoung;Park, So-Young
    • Journal of Yeungnam Medical Science
    • /
    • 제38권2호
    • /
    • pp.83-94
    • /
    • 2021
  • The global obesity epidemic and the growing elderly population largely contribute to the increasing incidence of type 2 diabetes. Insulin resistance acts as a critical link between the present obesity pandemic and type 2 diabetes. Naturally occurring reactive oxygen species (ROS) regulate intracellular signaling and are kept in balance by the antioxidant system. However, the imbalance between ROS production and antioxidant capacity causes ROS accumulation and induces oxidative stress. Oxidative stress interrupts insulin-mediated intracellular signaling pathways, as supported by studies involving genetic modification of antioxidant enzymes in experimental rodents. In addition, a close association between oxidative stress and insulin resistance has been reported in numerous human studies. However, the controversial results with the use of antioxidants in type 2 diabetes raise the question of whether oxidative stress plays a critical role in insulin resistance. In this review article, we discuss the relevance of oxidative stress to insulin resistance based on genetically modified animal models and human trials.

팔물탕의 항산화 효과와 자외선으로 유도된 각질형성세포 손상에 대한 보호효과 (Antioxidant and Protective Effects of Palmul-tang on Ultraviolet B (UVB)-induced Damage in Human Keratinocytes)

  • 김태연;박종필
    • 대한예방한의학회지
    • /
    • 제19권3호
    • /
    • pp.141-154
    • /
    • 2015
  • Objective : In this paper, we investigated the anti-oxidative capacities and protective effects of water extract of palmul-tang (PMT) against Ultraviolet B(UVB)-induced oxidative damage in human keratinocytes(HaCaT). Method : To evaluate the anti-oxidative activities of PMT, we measured scavenging activities on 1,1-diphenyl-2-picrylhydrazyl(DPPH) radical, hydroxyl radical, hydrogen peroxide, superoxide anion, lipid peroxidation and reducing power of PMT. To give an oxidative stress to HaCaT cells, UVB was irradiated with $40mJ/cm^2$ to HaCaT cells. To detect the protective effects of PMT against UVB, we measured cell viability, apoptotic bodies and reactive oxygen species(ROS) generation. Results : PMT showed the anti-oxidative activities by scavenging DPPH radical, hydroxyl radical, hydrogen peroxide, superoxide anion, lipid peroxidation. Also PMT showed high reducing values. The UVB-induced oxidative conditions led to the cell apoptosis. However, treatment with PMT reduced oxidative stress conditions, including inhibition of cell apoptosis and expression of ROS. Conclusion : PMT had anti-oxidative activities and exhibited protective effects against UVB on HaCaT cells. PMT would be useful for the development of cosmetics treating UVB-induced skin aging.

가감당귀음자의 항산화 효과와 자외선으로 유도된 각질형성세포 손상에 대한 보호효과 (Antioxidant and Protective Effects of Gagam-Danguieumja on Ultraviolet B-induced Damage in Human Keratinocytes)

  • 김태연;박종필
    • 동의생리병리학회지
    • /
    • 제29권6호
    • /
    • pp.475-484
    • /
    • 2015
  • In this paper, we studied the anti-oxidative capacities and protective effects of water extract of Gagam-Danguieumja(GDE) against Ultraviolet B(UVB)-induced oxidative damage in human keratinocytes(HaCaT). To evaluate the anti-oxidative activities of GDE, we measured scavenging activities on DPPH radical, hydroxyl radical, hydrogen peroxide, superoxide anion, lipid peroxidation and reducing power of GDE. To detect the protective effects of GDE against UVB, we irradiated with 40 mJ/㎠`s UVB to HaCaT cells then we measured reactive oxygen species(ROS) generation, apoptotic bodies and cell viability using DCFH-DA assay, Hoechst 33342 staining and MTT assay. GDE showed the anti-oxidative activities by scavenging DPPH radical, hydroxyl radical, hydrogen peroxide, superoxide anion, lipid peroxidation. Also GDE showed high reducing values. GDE reduced oxidative stress conditions by inhibition of ROS expression. Also the cell apoptosis by UVB-induced oxidative conditions was decreased by GDE treatment. These results could suggest that GDE had anti-oxidative activities and exhibited protective effects against UVB on HaCaT cells. GDE would be useful for the development of cosmetics treating UVB-induced skin aging.

Oxidative Stress and Skin Diseases: Possible Role of Physical Activity

  • Kruk, Joanna;Duchnik, Ewa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권2호
    • /
    • pp.561-568
    • /
    • 2014
  • Background: The skin is the largest body organ that regulates excretion of metabolic waste products, temperature, and plays an important role in body protection against environmental physical and chemical, as well as biological factors. These include agents that may act as oxidants or catalysts of reactions producing reactive oxygen species (ROS), reactive nitrogen species (RNS), and other oxidants in skin cells. An increased amount of the oxidants, exceeding the antioxidant defense system capacity is called oxidative stress, leading to chronic inflammation, which, in turn, can cause collagen fragmentation and disorganization of collagen fibers and skin cell functions, and thus contribute to skin diseases including cancer. Moreover, research suggests that oxidative stress participates in all stages of carcinogenesis. We report here a summary of the present state of knowledge on the role of oxidative stress in pathogenesis of dermatologic diseases, defensive systems against ROS/RNS, and discuss how physical activity may modulate skin diseases through effects on oxidative stress. The data show duality of physical activity actions: regular moderate activity protects against ROS/RNS damage, and endurance exercise with a lack of training mediates oxidative stress. These findings indicate that the redox balance should be considered in the development of new antioxidant strategies linked to the prevention and therapy of skin diseases.

안구의 기능이상에 대한 산화스트레스의 중요성 (Importance of Oxidative Stress in Ocular Dysfunction)

  • 이지영
    • 한국안광학회지
    • /
    • 제13권3호
    • /
    • pp.103-109
    • /
    • 2008
  • 목적: 본 논문에서는 활성산소(reactive oxygen species, ROS)와 활성질소(reactive oxygen species, RNS)생성의 결과 초래되는 산화스트레스(oxidative stress)와 안질환과의 관계, 특히, 백내장발생과의 관련성 연구에 대한 고찰과, 안구의 기능이상에 있어 산화스트레스의 매개체(mediator)로서 과산화지질(lipid peroxide)의 역할에 대해 논의하고자 한다. 방법: 산화스트레스는 단백질 산화, DNA 파괴, 세포사(apoptosis), 지질과산화(lipid peroxidation) 등의 다양한 세포손상을 나타낸다. 이러한 손상은 많은 질병의 발생과 관련되어 있다. 백내장 발생의 주요한 원인중의 하나가 안구조직이 일정하고 지속적으로 산화스트레스의 환경에 노출되는 것으로 알려져 있다. 따라서 산화스트레스의 안구기능이상에 대한 역할을 조사하였다. 결과: 수정체는 자외선에의 만성적인 노출과 세포대사과정에서 필수불가결하게 생성되는 활성산소에 의해 끊임없이 공격을 받는다. 과도하게 생성된 활성산소에 의한 수정체 단백질의 분해(degradation), 산화(oxidation), 가교형성(crosslinking), 응집(aggregation) 등은 백내장발생에 있어 중요한 요인으로 사료된다. 결론: 산화스트레스와 체내의 산화/항산화 불균형이 과도한 활성산소를 생성하게 되고 결국, 안구의 기능이상을 일으킨다고 할 수 있다. 이러한 결과들에도 불구하고, 산화스트레스와 안구이상과의 관계를 더욱 정확하게 설명할 수 있는 분자기전에 대한 정보는 아직 부족한 상태이며, 더욱 많은 연구가 필요하다.

  • PDF

HepG2 세포에서 지속적인 활성 산소 노출이 ${\gamma}$-Glutamyltranspeptidase 발현과 활성에 미치는 영향 (Effect of Continuous Exposure to Reactive Oxygen Species on ${\gamma}$-Glutamyltranspeptidase Expression and Activity in HepG2 Cells)

  • 김영환;최달웅
    • 한국환경보건학회지
    • /
    • 제30권3호
    • /
    • pp.230-238
    • /
    • 2004
  • The adverse health effects of a number of environment pollutions are related to the formation of free radicals. Induction of antioxidant defensive system in the response to an oxidative attack is an essential element of the cell to survive. CYP2E1 is easily induced by organic solvents and induces continuous formation of reactive oxygen species (ROS). ${\gamma}$-Glutamyltranspeptidase (${\gamma}$GT) plays an important role in glutathione metabolism and xenobiotic detoxification. To evaluate the characteristic of oxidative stress which induces GGT expression and to understand human antioxidant defensive response against oxidative stress induced by CYP2E1, we studied regulation of ${\gamma}$GT enzyme expression in response to various oxidative stresses in human HepG2 cells. The ${\gamma}$GT activity was not modified after exposure of acute oxidative stress inducing agents (ferric nitrilotriacetate, cumene hydroperoxide, ADP-Fe, O-tetradecanoylphorbol-13-acetate, tumor necrosis factor-alpha). To induce continuous exposure of cells to ROS, HepG2 cells were transfected by human CYP2E1 gene transiently. The CYP2E1 activity was verified with chlorzoxazone hydroxylation. Transfection of CYP2E1 showed continuous 60% increase in intracellular ROS and 240 % increase in microsomal ROS. CYP2E1 overexpressing cells showed increased ${\gamma}$GT activity (2.5-fold). The observed enhancement of ${\gamma}$GT activity correlated with a significant increase of ${\gamma}$GT mRNA (2.1-fold). Treatment with antioxidant strongly prevented the increase in ${\gamma}$GT activity. The CYP2E1 overexpression did not modify toxicity index and increased glutathione levels. These results show that continuous exposure of cells to ROS produced by CYP2E1 up-regulates ${\gamma}$GT; This may be one of the adaptive antioxidant responses of cells to oxidative insult. Present study also suggests that the induction of ${\gamma}$GT could be used as a marker of oxidative stress induced by exposure to organic solvents.