• Title/Summary/Keyword: Oxidative respiration

Search Result 38, Processing Time 0.031 seconds

Impact of glucose and pyruvate on adenosine triphosphate production and sperm motility in goats

  • Rangga Setiawan;Raden Febrianto Christi;Ken Ratu Gharizah Alhuur;Rini Widyastuti;Nurcholidah Solihati;Siti Darodjah Rasad;Kundrat Hidajat;Duy Ngoc Do
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.631-639
    • /
    • 2024
  • Objective: This study evaluates goat sperm motility in response to metabolic substrates and various inhibitors, aiming to assess the relative contribution of glycolysis and mitochondrial oxidation for sperm movement and adenosine triphosphate (ATP) production. Methods: In the present study, two main metabolic substrates; 0 to 0.5 mM glucose and 0 to 30 mM pyruvate were used to evaluate their contribution to sperm movements of goats. Using a 3-chloro-1,2-propanediol (3-MCPD), a specific inhibitor for glycolysis, and carbonyl cyanide 3-chlorophenylhydrazone as an inhibitor for oxidative phosphorylation, cellular mechanisms into ATP-generating pathways in relation to sperm movements and ATP production were observed. Data were analysed using one-way analysis of variance for multiple comparisons. Results: Sperm motility analysis showed that either glucose or pyruvate supported sperm movement during 0 to 30 min incubation. However, the supporting effects were abolished by the addition of a glycolysis inhibitor or mitochondrial uncoupler, concomitant with a significant decrease in ATP production. Although oxidative phosphorylation produces larger ATP concentrations than those from glycolysis, sperm progressivity in relation to these two metabolic pathways is comparable. Conclusion: Based on the present study, we suggest that goat sperm use glucose and pyruvate to generate cellular energy through glycolysis and mitochondrial respiration pathways to maintain sperm movement.

Molecular cloning of cDNAs encoding antioxidant enzymes in Korean rock bream (Oplegnathus fasciatus)

  • Park, Byul-Nim;Park, Ji-Eun;Kim, Ki-Hong;Kim, Sung-Koo;Nam, Yoon-Kwon
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.39-39
    • /
    • 2003
  • Antioxidant enzyme genes play a key role in cell defense against the lethal effects of oxidative stresses in animals and have an essential function which has allowed the evolution of aerobic respiration starting from an ancient form of oxygen-insensitive life. Piscine antioxidant enzymes are also involved in the rapid response to various toxic chemicals as well as many biological stresses, indicating that they could be used as biomarkers for health and aquatic environment. With the purpose for developing fine molecular probing tool to assess the stresses in marine fish, we identified three major antioxidant enzyme genes (superoxide dismutase, catalase and glutathione-S-transferase) from Korean rock bream using expressed sequence tag analysis and/or high density filter screening. Here we report the molecular information on these gene transcripts including complete sequence data and expression profiles.

  • PDF

From the Photosynthesis to Hormone Biosynthesis in Plants

  • Hyong Woo Choi
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.99-105
    • /
    • 2024
  • Land plants produce glucose (C6H12O2) through photosynthesis by utilizing carbon dioxide (CO2), water (H2O), and light energy. Glucose can be stored in various polysaccharide forms for later use (e.g., sucrose in fruit, amylose in plastids), used to create cellulose, the primary structural component of cell walls, and immediately metabolized to generate cellular energy, adenosine triphosphate, through a series of respiratory pathways including glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation. Additionally, plants must metabolize glucose into amino acids, nucleotides, and various plant hormones, which are crucial for regulating many aspects of plant physiology. This review will summarize the biosynthesis of different plant hormones, such as auxin, salicylic acid, gibberellins, cytokinins, ethylene, and abscisic acid, in relation to glucose metabolism.

Effects of Exercise and Supplementation of L-Carnitine and Antioxidants on Mitochondrial Function in Rats

  • Kim, Sook-Bae;Kim, Sun-Ju
    • Journal of Community Nutrition
    • /
    • v.4 no.3
    • /
    • pp.187-194
    • /
    • 2002
  • This study was investigated the effects of exercise and supplementation of L-carnitine and antioxidants on hepatic mitochondrial function, especially oxidative phosphorylation (OXPHOS). Isolated hepatic mitochondria from 4 rat groups were functionally tested by an analysis of respiration and the coupling of this process to ATP synthesis in the presence of ADP. Four groups were non-trained, non-supplemented group (NTNS), non-trained, supplemented group (NTS), long term-trained, non-supplemented group (LTNS) , and long term-trained, supplemented group (LTS). The trained rats run on a treadmill (grade 10°,20 m/min) for 60min/day for 8 weeks. The supplemented rats were treated with L-carnitine (0.5% diet), vitamin E(0.5mg/g BW), vitamin C (0.5mg/g BW) and melatonin (1 $\mu$ g/g BW) for 8 weeks. There were exercise effects on improving mitochondrial OXPHOS. Within non-supplemented groups, exercised rats resulted in a significant decrease in state 4 oxygen consumption, which increased the respiratory control (RC) ratio and ADP : O (P/O) ratio. There were supplementation effects on improving mitochondrial OXPHOS, too. Within non-exercised rats, supplemented rats resulted in a significant decrease in state 4 oxygon consumption. which increased the RC ratio and P/O ratio. There were additive effects of exercise and supplementation on OXPHOS. Within supplemented rats, exercise resulted in an increase in RC ratio. Significant effects of exercise-supplement interaction on improving OXPHOS were identified. It suggests that exercise and supplementation of L-carnitine and antioxidants might improve more efficiently the impaired OXPHOS efficiency in mitochondrial dysfunction that recognized as is an important cause of degenerative diseases. (J Community Nutrition 4(3) : 187∼194, 2002)

Accelerated Growth of Corynebacterium glutamicum by Up-Regulating Stress-Responsive Genes Based on Transcriptome Analysis of a Fast-Doubling Evolved Strain

  • Park, Jihoon;Lee, SuRin;Lee, Min Ju;Park, Kyunghoon;Lee, Seungki;Kim, Jihyun F.;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1420-1429
    • /
    • 2020
  • Corynebacterium glutamicum, an important industrial strain, has a relatively slower reproduction rate. To acquire a growth-boosted C. glutamicum, a descendant strain was isolated from a continuous culture after 600 generations. The isolated descendant C. glutamicum, JH41 strain, was able to double 58% faster (td=1.15 h) than the parental type strain (PT, td=1.82 h). To understand the factors boosting reproduction, the transcriptomes of JH41 and PT strains were compared. The mRNAs involved in respiration and TCA cycle were upregulated. The intracellular ATP of the JH41 strain was 50% greater than the PT strain. The upregulation of NCgl1610 operon (a putative dyp-type heme peroxidase, a putative copper chaperone, and a putative copper importer) that presumed to role in the assembly and redox control of cytochrome c oxidase was found in the JH41 transcriptome. Plasmid-driven expression of the operon enabled the PT strain to double 19% faster (td=1.82 h) than its control (td=2.17 h) with 14% greater activity of cytochrome c oxidase and 27% greater intracellular ATP under the oxidative stress conditions. Upregulations of genes those might enhance translation fitness were also found in the JH41 transcriptome. Plasmid-driven expressions of NCgl0171 (encoding a cold-shock protein) and NCgl2435 (encoding a putative peptidyl-tRNA hydrolase) enabled the PT to double 22% and 32% faster than its control, respectively (empty vector: td=1.93 h, CspA: td=1.58 h, and Pth: td=1.44 h). Based on the results, the factors boosting growth rate in C. gluctamicum were further discussed in the viewpoints of cellular energy state, oxidative stress management, and translation.

Effect of Cold Exposure on Thyroid Thermogenesis in Rats (한냉에 노출된 흰쥐에서 갑상선 호르몬이 체열 생산인 미치는 영향)

  • 황애란
    • Journal of Korean Academy of Nursing
    • /
    • v.13 no.2
    • /
    • pp.87-104
    • /
    • 1983
  • It has been well documented that animals exposed to cold show increased activity of thyroid gland. The calorigenic action of thyroid hormone has been demonstrated by a variety of in vivo and in vitro studies. According to Edelman et al., the thyroid thermogenesis is due to activation of energy consuming processes, especially the active sodium transport by the hormone in target tissues. If so, the increase in thyroid activity during cold exposure should induce increased capacity of sodium transport in target tissue and the change in tissue metabolism should be precisely correlated with the change in Na+_K+_ATPase activity of the tissue. This possibility was tested in the present study: in one series, changes in oxygen consumption and Na+_K+_-ATPase activity of liver preparations were measured in rats as a function of thyroid status, in order to establish the effect of thyroid hormone on the tissue respiration and enzyme system in another series, the effect of cold stimulus on the serum thyroid hormone level, hepatic tissue oxygen consumption and Na+_K+_ATPase activity in rats. The results obtained are as follows: 1. The Na+_dependent oxygen consumption of liver slices, the oxygen consumption of liver mitochondria and the Na+_K+_ATPase activity of liver preparations were significantly inhibited in hypothyroidism and activated in hyperthyroidism. Kinetic analysis indicated that the Vmax. of Na+_K+_ATPase was decreased in hypothyroidism and increased in hyperth)'roidism. 2. In cold exposed rats, the serum triiodothyronine (T₃) level increased rapidly during the initial one day of cold exposure, then declined slowly to the control level after two weeks. The serum thyroxine (T₄) level decreased gradually throughout the cold exposure. Accordingly the T₃/T₄ratio increased. The mitochondrial oxygen consumption and the Na+_dependent oxygen consumption of liver slices increased during the first two days and then remained unchanged thereafter The activity of the Na+_K+_ATPase in liver preparations increased during cold exposure with a time course similar to that of oxygen consumption. Kinetic analysis indicated that the Vmax. of Na+_K+_ATPase increased. 3. Once the animal was adapted to cold, induction of hypothyroidism did not significantly alter the hepatic oxygen consumption and Na+_K+_ATPase activity. These results indicate that: 1) thyroid hormone increases capacities of mitochondrial respiration and active sodium transport in target tissues such as liver; 2) the increased T₃level during the initial period of cold exposure facilitates biosynthesis of Na+_K+_ATPase and mitochondrial enzymes for oxidative phosphorylation, leading to enhanced production and utilization of ATP, hence heat production.

  • PDF

An Experimental Study on the Restoration Creation of Tidal Flats (간석지 생태계 복원에 관한 실험적 연구)

  • Lee, Jeoung-gyu;Lee, Nam-hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.1
    • /
    • pp.77-82
    • /
    • 2000
  • Seven constructed and three natural tidal flats were compared to evaluate state-of- the-art of creation and restoration technology for tidal flats. parameters studied were physico-chemical and biological characteristics of soils and rate of respiration. The natural tidal flats had higher contents of silts, nitrogen and organic matter compared to the constructed ones. The natural ones had reductive Bone below 2 cm whereas the constructed ones had oxidative zone from the surface to below 20 cm. The bacterial population in the soil of the constructed tidal flats was one to two magnitudes lower than that in the natural ones. Biomass of macrobenthos and microbial respiration rate, however, were not different significantly between the natural and the constructed tidal flats. The purification capacity by diatom+bacterial+meiobenthos and macrobenthos in the constructed tidal flats was higher than that in the natural ones due to deeper permeable layer for purification in the constructed tidal flats. There was an exceptional constructed tidal flat with similar physico-chemical and biological characteristics to natural ones. Shearing stress to the surface of the tidal flat by the flow of seawater was as low as that of natural ones. These hydraulic conditions seemed to be a controlling factor on structures and functions of tidal flats. The control of hydraulic condition seemed to be one of the most important factors to create natural-like tidal flats.

  • PDF

Fungal Development, Respiration and Activity of Oxidative Enzymes in Rice Plants Inoculated with Pyricularia oryzae in Both Compatible and Incompatible Combinations (벼 도열병균에 감염된 친화 및 비친화 조합 벼에서의 균생장, 호흡 및 산화효소 활성)

  • Chung Bong-Koo;Chung Hoo-Sup
    • Korean journal of applied entomology
    • /
    • v.21 no.3 s.52
    • /
    • pp.113-122
    • /
    • 1982
  • Appressorial formation of Pyricularia oryzae on leaves showed no marked difference between highly resistant Tongil and susceptible Norm No. 6. Race N-2 of the blast fungus penetrated directly into motor cells of susceptible cultivar Norm No. 6, later extensively spreading hyphae were developed, while in the cultivar Tongil, after penetration, no further hyphal extension resulted. In discoloration of infected tissues, the highly resistant cultivar Tongil not only discolored rapidly, but also the percentage of discolored cells was higher than the susceptible cultivars, Jinheung and Norm No. 6. The respiratory rate, was generally higher in infected tissue than in healthy tissue. No significant difference in the respiration rate of resistant Suwon No. 180 was not found between the infected and healthy leaf tissue, whereas, in susceptible Jinheung, a marked increase in respiratory rate was caused by blast infection. The respiratory rate increased at the appearance of the first visible symptom in all cultivars resistant or susceptible. Higher peroxidase activity was found in infected tissues as compared with healthy tissue. Peroxidase activity increased in resistant and susceptible reactions. Particularly, in resistant reaction, the increase of the activity was more pronounced. In highly resistant reaction, there was no difference in peroxidase activity between healthy and infected tissues. Ascorbic acid oxidase, hydroquinone oxidase and catechol oxidase had the same trend as the peroxidase. In contrast, activity of catalase rather decreased in leaf tissues infected with compatible races of the fungus.

  • PDF

Role of Mitochondria in Oxidative Damage of Post-Ischemic Reperfused Hearts (허혈/재관류 심장의 산화손상에서 미토콘드리아의 역할)

  • Park, Jong-Wan;Chun, Yang-Sook;Kim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.201-209
    • /
    • 1996
  • Restoration of the blood flow after a period of ischemia is accompanied by generation of toxic oxygen radicals. This phenomenon may account for the occurrence of reperfusion-mediated tissue injury in ischemic hearts. In in vitro studies, although oxygen radicals can be generated from a variety of sources, including xanthine oxidase system, activated leucocytes, mitochondria and others, the most important source and mechanism of oxygen radical production in the post-ischemic reperfused hearts is unclear. In the present study, we tested the hypothesis that the respiratory chain of mitochondria might be an important source of oxygen radicals which are responsible for the development of the reperfusion injury of ischemic hearts. Langendorff-perfused, isolated rat hearts were subjected to 30 min of global ischemia at $37^{\circ}C$, followed by reperfusion. Amytal, a reversible inhibitor of mitochondrial respiration, was employed to assess the mitochondrial contributions to the development of the reperfusion injury. Intact mitochonria were isolated from the control and the post-ischemic reperfused hearts. Mitochondrial oxygen radical generation was measured by chemiluminescence method and the oxidative tissue damage was estimated by measuring a lipid peroxidation product, malondialdehyde(MDA). To evaluate the extent of the reperfusion injury, post-ischemic functional recovery and lactate dehydrogenase(LDH) release were assessed and compared in Amytal-treated and -untreated hearts. Upon reperfusion of the ischemic hearts, MDA release into the coronary effluent was markedly increased. MDA content of mitochondria isolated from the post-ischemic reperfused hearts was increased to 152% of preischemic value, whereas minimal change was observed in extramitochondrial fraction. The generation of superoxide anion was increased about twice in mitochondria from the reperfused hearts than in those from the control hearts. Amytal inhibited the mitochondrial superoxide generation significantly and also suppressed MDA production in the reperfused hearts. Additionally, Amytal prevented the contractile dysfunction and the increased release of LDH observed in the reperfused hearts. In conclusion, these results indicate that the respiratory chain of mitochondria may be an important source of oxygen radical formation in post-ischemic reperfused hearts, and that oxygen radicals originating from the mitochondria may contribute to the development of myocardial reperfusion injury.

  • PDF

The effect of aluminum coating to corrugated packaging on quality characteristics of paprika during storage (골판지 포장재에 알루미늄 코팅이 파프리카의 저장 중 품질특성에 미치는 영향)

  • Kim, Ah-Na;Ha, Myeong-Hwa;Lee, Kyo-Yeon;Rahman, M. Shafiur;Kim, Nam-Sub;Choi, Sung-Gil
    • Food Science and Preservation
    • /
    • v.24 no.7
    • /
    • pp.934-941
    • /
    • 2017
  • The objective of this study was to investigate the effect of corrugated packaging coated with aluminum (Al) on quality characteristics of red paprika during storage at $25^{\circ}C$. Characteristics such as weight loss, hardness, total phenolic content, antioxidant activities, polygalacturonic acid (PG) activity, and oxidative enzyme activities (polyphenol oxidase and peroxidase activities) of paprikas, packed in corrugated packaging with or without Al-coating were compared as a function of storage time. Al coating inside of corrugated box was found to inhibit PG activity, resulting in prevention of weight loss and maintenance of hardness of paprika during storage, compared to the control sample. This may be due to Al coating treatment that enhance moisture-proof property and hinder gas transmission of corrugated packaging. Furthermore, paprika in Al-coated-corrugated packaging was lower in oxidative enzyme activities than the control, which caused higher total phenolic content and antioxidant activities during storage. As a results, the Al coated-corrugated packaging can be used as a functional packaging material to extend the shelf-life and improve the storage quality of paprika by preventing their respiration and transpiration.