• 제목/요약/키워드: Oxidation stress

검색결과 391건 처리시간 0.029초

11층 열장벽 피막의 고온물성에 관한 연구 (A study on the thermal properties of the 11 layer thermal barrier)

  • 권현옥;강현욱;남영민;송요승;홍상희;현규택;윤종구;이득용;김선화
    • 한국표면공학회지
    • /
    • 제34권1호
    • /
    • pp.3-9
    • /
    • 2001
  • The purpose of this study is to evaluate the properties of the functional gradient thermal barrier coatings by plasma spray process. The evaluations of mechanical and thermal properties such as fatigue, oxidation and wear-resistance at high temperatures have been conducted. Furthermore, residual stress and bond strength have been evaluated. The range of thickness of coated layers was 550~600$\mu\textrm{m}$. The range of hardness of layers was 800~900 Hv and the porosity range of coatings was about 7 to 14%. The top coating layer of $ZrO_2$ in thermal barrier was composed of tetragonal structure after spraying. The coated layers of $ZrO_2$ on the Inconel substrate is the best resistance for thermal fatigue. Those coatings had the least compressive stress in comparison with other coatings. In high temperature oxidation test, the coatings on Inconel substrate was better than the coatings on SUS substrate. The bond strength of the concave type was greater than that of linear types and convex types coatings.

  • PDF

Synthesis of WC-CrN superlattice film by cathodic arc ion plating system

  • Lee, Ho. Y.;Han, Jeon. G.;Yang, Se. H.
    • 한국표면공학회지
    • /
    • 제34권5호
    • /
    • pp.421-428
    • /
    • 2001
  • New WC-CrN superlattice film was deposited on Si substrate (500$\mu\textrm{m}$) using cathodic arc ion plating system. The microstructure and mechanical properties of the film depend on the superlattice period (λ). In the X-ray diffraction analysis (XRD), preferred orientation of microstructure was changed according to various superlattice periods(λ). During the Transmission Electron Microscope analysis (TEM), microstructure and superlattice period (λ) of the WC - CrN superlattice film was confirmed. Hardness and adhesion of the deposited film was evaluated by nanoindentation test and scratch test, respectively. As a result of nanoindentation test, the hardness of WC - CrN superlattice film was gained about 40GPa at superlattice period (λ) with 7nm. Also residual stress with various superlattice period (λ) was measured on Si wafer (100$\mu\textrm{m}$) by conventional beam-bending technique. The residual stress of the film was reduced to a value of 0.2 GPa by introducing Ti - WC buffer layers periodically with a thickness ratio ($t_{buffer}$/$t_{buffer+superlattice}$ ). To the end, for the evaluation of oxidation resistance at the elevated temperature, CrN single layer and WC - CrN superlattice films with various superlattice periods on SKD61 substrate was measured and compared with the oxidation resistance.

  • PDF

카본블랙의 함량에 따른 송전용 반도전 재료의 기계적 특성 및 Smoothness (Mechanical Properties and Smoothness of Semiconductive Shield for Power Transmission by Carbon Black Content)

  • 이경용;양종석;이관우;최용성;박대희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.301-307
    • /
    • 2004
  • To improve mean-life and reliability of power cable in this paper, we have investigated stress-strain and smoothness showing by changing the content of carbon black that is semiconductive additives for underground power transmission. Specimens were made of sheet form with the three of existing resins and the nine of specimens for measurement. Stress-strain of specimens was measured by TENSOMETER 2000. A speed of measurement was 200[mm/min], ranges of stress and strain were $400(Kgf/cm^2)$ and 600[%]. In addition tests of stress-strain were progressed by aging specimens at air oven. Finally we wished to look for protrusion of specimens by using smoothness tester. According to increasing the content of carbon black from this experimental result, yield stress was increased, while strain was decreased. And stress-strain were decreased some after aging because of oxidation reaction of chemical defect. Lastly surface of specimens smoothed generally.

  • PDF

$Ta_2O_{5}$ 박막의 누설전류 및 유전특성과 박막응력 (Leakage Current, Dielectric Properties and Stresses of $Ta_2O_{5}$ Thin Films)

  • 이재석;양승기;신상모;박종완
    • 한국재료학회지
    • /
    • 제5권6호
    • /
    • pp.633-638
    • /
    • 1995
  • 열산화 및 PECVD법으로 p-type(100)Si wafer위에 $Ta_2O_{5}$, 박막을 형성한 후 이들 박막의 전기적 특성과 박막응력 상호간의 관계를 연구하였다 열산화 시편의 경우 dc magnetron sputtering법으로 Ta을 증착시킨 후에 산화온도와 시간을 변수로 열산화시켜 박막을 형성시켰으며 PECVD 시편의 경우 RF power density를 변화시켜가면서 박막을 형성시켰다. 이들 박막의 전기적 특성과 박막응력을 조사하여 전기적 특성과 박막응력 상호간의 관계를 조사한 결과 열산화 박막의 경우 누설전류와 박막응력은 독립적인데 반해 PECVD 박막의 경우 박막응력의 절대값은 누설전류가 증가함에 따라 증가하였다.

  • PDF

탄소섬유와 에폭시 기지의 계면강도 증가를 위한 황산/질산 양극산화에 관한 영향 (Effect of Anodic Oxidation of H2SO4/HNO3 Ratio for Improving Interfacial Adhesion between Carbon Fibers and Epoxy Matrix Resins)

  • 문철환;정건;임승순;나창운;박수진
    • 폴리머
    • /
    • 제37권1호
    • /
    • pp.61-65
    • /
    • 2013
  • 본 실험에서는, 양극산화 처리된 탄소섬유의 표면변화가 탄소섬유강화 복합재료의 기계적 계면특성을 통하여 살펴보았다. 양극산화 처리된 탄소섬유의 표면특성은 FTIR, XPS, 그리고 SEM을 통하여 알아보았다. 복합재료의 기계적 계면특성은 층간전단강도(interlarminar shear strength; ILSS)와 임계세기인자(critical stress intensity factor; $K_{IC}$) 그리고 임계변형속도에너지(critical strain energy release rate; $G_{IC}$)를 통하여 고찰하였다. 실험결과 양극산화에 의한 각각의 표면 처리된 탄소섬유는 표면특성의 변화를 가져오며, 복합재료의 ILSS, $K_{IC}$, 그리고 $G_{IC}$같은 기계적 계면특성은 탄소섬유의 양극산화를 통하여 향상되어진다. 전해질이 20% 황산/질산(3/1)일 때 다른 전해질보다 기계적 물성의 가장 큰 향상을 보였다. 이는 양극산화로 탄소섬유와 매트릭스 사이의 계면결합력의 향상때문이라 판단된다.

Role of Osmotic and Salt Stress in the Expression of Erythrose Reductase in Candida magnoliae

  • Park, Eun-Hee;Lee, Ha-Yeon;Ryu, Yeon-Woo;Seo, Jin-Ho;Kim, Myoung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권10호
    • /
    • pp.1064-1068
    • /
    • 2011
  • The osmotolerant yeast, Candida magnoliae, which was isolated from honeycomb, produces erythritol from sugars such as fructose, glucose, and sucrose. Erythrose reductase in C. magnoliae (CmER) reduces erythrose to erythritol with concomitant oxidation of NAD(P)H. Sequence analysis of the 5'-flanking region of the CmER gene indicated that one putative stress response element (STRE, 5'-AGGGG-3'), found in Saccharomyces cerevisiae, exists 72 nucleotides upstream of the translation initiation codon. An enzyme activity assay and semiquantitative reverse transcription polymerase chain reaction revealed that the expression of CmER is upregulated under osmotic and salt stress conditions caused by a high concentration of sugar, KCl, and NaCl. However, CmER was not affected by osmotic and oxidative stress induced by sorbitol and $H_2O_2$, respectively. The basal transcript level of CmER in the presence of sucrose was higher than that in cells treated with fructose and glucose, indicating that the response of CmER to sugar stress is different from that of GRE3 in S. cerevisiae, which expresses aldose reductase in a sugarindependent manner. It was concluded that regulation of CmER differs from that of other aldose reductases in S. cerevisiae.

Src Protein Tyrosine Kinases in Stress Responses

  • Grishin, Anatoly;Corey, Seth J.
    • Animal cells and systems
    • /
    • 제6권1호
    • /
    • pp.1-12
    • /
    • 2002
  • A role of Src family protein Tyrosine kinases (SFK) as mediators of receptor-ligand initiated responses is well established. Well documented, but less well understood is the role of SFK in cellular reaction to stresses. Evidence from the wide variety of experimental systems indicates that SFK mediate responses to all major classes of stress, including oxidation, DNA damage, mechanical impacts, and protein denaturing. SFK may be activated by stresses directly or via regulatory circuits whose identity is not yet fully understood. Depending on the cell type and the nature of activating stimulus, SFK may activate known downstream signaling cascades leading to cell survival, proliferation, cytoskeletal rearrangement, and apoptosis; the identity of these cascades is discussed. As in the case of receptor-initiated signaling, roles of individual SFK in various stress response may be redundant or non-redundant. Although signals generated by different stresses are generally transduced via distinct SFK pathways, these pathways may overlap or exhibit crosstalk. In some cell types stress-induced activation of SFK promotes survival and inhibits apoptosis, whereas the opposite may be true for other cell types. Stress responses constitute a new and rapidly developing area of SFK-mediated signaling.

Antioxidant effect of Lonicera Caerulea on heat stress-treated male mice

  • Kang, Donghun;Kim, Daeyoung
    • 한국동물생명공학회지
    • /
    • 제36권4호
    • /
    • pp.220-229
    • /
    • 2021
  • Lonicera caerulea (Honey berry, HB) has been used in medical treatment in Russia, Japan, China and Korea. It has high level of vitamin C and polyphenolics. Polyphenolics can improve anti-inflammatory effect and prevent cancer, diabetes mellitus type 2. Also, Vitamin C is a representative anti-oxidant. however, it is still unknown what effect it will have on the oxidation stress of the reproductive system. In previous studies, ROS can be produced when it is exposed to heat stress and has negative effect on sperm's maturation, capacitation, hyperactivation, acrosome reaction and fusion of egg and sperm. Therefore, the purpose of this study is to investigate the antioxidant effects of L. Caerulea on the sperm and mice. At first, it conducted using ICR mouse (n = 20) for 4 weeks. There are four groups of mice (n = 5 per group). Also, L. Caerulea was taken by oral gavage. Group I (control) kept at 23℃-27℃ and administer D.W (0.5 mL/day), Likewise, Group II (HB) kept at room temperature but gave HB (250 mg/kg, 0.5 mL/day), Group III (HB + HS) received heat stress (40℃) using hyperthermia induction chamber and gave HB at same dose. and Group IV (HS) exposed heat stress only. Mainly, we showed degree of gene expression using Western blot in SOD, HSP 70, 17β-HSD and Real-time PCR. It can find correlation between intracellular activity like steroid hormone, apoptosis under ROS and antioxidant activity of L. Caerulea.

Antioxidation and anti-inflammatory effects of gamma-irradiated silk sericin and fibroin in H2O2-induced HaCaT Cell

  • Ji-Hye Choi;Sangmin Lee;Hye-Ju Han;Jungkee Kwon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권1호
    • /
    • pp.105-112
    • /
    • 2023
  • Oxidative stress in skin cells can induce the formation of reactive oxygen species (ROS), which are critical for pathogenic processes such as immunosuppression, inflammation, and skin aging. In this study, we confirmed improvements from gamma-irradiated silk sericin (I-sericin) and gamma-irradiated silk fibroin (I-fibroin) to skin cells damaged by oxidative stress. We found that I-sericin and I-fibroin effectively attenuated oxidative stress-induced ROS generation and decreased oxidative stress-induced inflammatory factors COX-2, iNOS, tumor necrosis factor-α, and interleukin-1β compared to the use of non-irradiated sericin or fibroin. I-sericin and Ifibroin effects were balanced by competition with skin regenerative protein factors reacting to oxidative stress. Taken together, our results indicated that, compared to non-irradiated sericin or fibroin, I-sericin, and I-fibroin had anti-oxidation and antiinflammation activity and protective effects against skin cell damage from oxidative stress. Therefore, gamma-irradiation may be useful in the development of cosmetics to maintain skin health.

전기화학적 산화처리가 탄소섬유/극성화된 폴리프로필렌 복합재의 기계적 계면 특성에 미치는 영향 (Effects of Electrochemical Oxidation of Carbon Fibers on Mechanical Interfacial Properties of Carbon Fibers-reinforced Polarized-Polypropylene Matrix Composites)

  • 김현일;최웅기;오상엽;안계혁;김병주
    • 공업화학
    • /
    • 제24권5호
    • /
    • pp.476-482
    • /
    • 2013
  • 본 연구에서는 탄소섬유 표면에 가해진 전기화학적 산화처리가 탄소섬유강화 극성화된 폴리프로필렌 기지 복합재료의 기계적 계면 물성에 미치는 영향을 알아보기 위해 전류밀도 변수에 따른 섬유표면의 변화를 관찰하였다. 표면처리 전후의 탄소섬유 표면특성은 주사전자현미경과 원자현미경, 적외선분광법, X선광전자분광법과 접촉각으로 분석하였다. 탄소섬유강화복합재의 기계적 계면특성은 임계응력세기인자를 측정하여 평가하였다. 실험 결과 전기화학적 산화처리 후 섬유 표면의 $O_{1s}$ 피크의 증가를 관찰할 수 있었고, 이는 섬유의 표면자유에너지의 증가를 유도하며, 탄소섬유와 폴리프로필렌의 계면 결합력이 증가된 것으로 판단된다. 결론적으로 탄소섬유강화복합재료의 기계적 물성은 탄소섬유와 극성 폴리프로필렌 기지와의 계면 강도조절을 통해 가능할 것으로 판단된다.