Browse > Article
http://dx.doi.org/10.14478/ace.2013.24.5.476

Effects of Electrochemical Oxidation of Carbon Fibers on Mechanical Interfacial Properties of Carbon Fibers-reinforced Polarized-Polypropylene Matrix Composites  

Kim, Hyun-Il (Korea Institute of Carbon Convergence Technology, R&D Division)
Choi, Woong-Ki (Korea Institute of Carbon Convergence Technology, R&D Division)
Oh, Sang-Yub (Korea Institute of Carbon Convergence Technology, R&D Division)
An, Kay-Hyeok (Korea Institute of Carbon Convergence Technology, R&D Division)
Kim, Byung-Joo (Korea Institute of Carbon Convergence Technology, R&D Division)
Publication Information
Applied Chemistry for Engineering / v.24, no.5, 2013 , pp. 476-482 More about this Journal
Abstract
In this work, the effects of electrochemical oxidation of carbon fiber surfaces on mechanical interfacial properties of carbon fibers-reinforced polarized-polypropylene matrix composites were studied with various current densities during the treatments. Surface properties of the fibers before and after treatments were observed by SEM, AFM, XPS, and contact angle measurements. Mechanical interfacial properties of the composites were measured in terms of critical stress intensity factor ($K_{IC}$). From the results it was found that $O_{1s}$ peaks of the fiber surfaces were strengthened after electrochemical oxidation which led to the enhancement of surface free energy of the fiber, resulting in good mechanical performance of the composites. It can be concluded that electrochemical oxidation of the carbon fiber surfaces can control the interfacial adhesion between the carbon fibers and polarized-polypropylene in this composites system.
Keywords
electrochemical oxidation; carbon fiber; mechanical interfacial properties; surface free energy;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 K. E. Choi and M. K. Seo, A Study on the Preparation of the Eco-friendly Carbon Fibers-Reinforced Composites, Carbon Lett., 14, 58 (2013).   DOI
2 W. S. Smith, Engineered Materials Handbook, Vol. 1, ASM International, Ohio (1987).
3 J. B. Donnet and R. C. Bansal, Carbon Fibers, 2nd ed., p. 95-121, Marcel Dekker, NewYork (1990).
4 E. Fitzer, Carbon Fibers and Their Composites, Springer, Berlin (1985).
5 E. Jeong, J. Kim, S. H. Cho, J. il. Kim, I. S. Han, and Y. S. Lee, New application of layered silicates for carbon fiber reinforced carbon composites, J. Ind. Eng. Chem., 17, 191 (2011).   DOI
6 R. S. Bauer, Epoxy Resin Chemistry, ACS Advances in Chemistry Series No. 114, American Chemical Society, Washington DC (1979).
7 S. J. Park, Interfacial Forces and Fields: Theory and Applications, ed. By J. P. Hsu, chap. 9, Marcel Dekker, New York (1999).
8 A. R. Sandi and M. R. Piggott, Interfacial effects in carbon-epoxies, J. Mater. Sci., 20, 432 (1985).
9 H. S. Schwartz and J. T. Hartness, in "Toughened Composites" (Ed. N. Johnston), ASTM STP 937, American Society for Testing and Materials, Philadelphia, PA, 150 (1987).
10 M. M. Schwartz, Composite Materials Handbook", 2nd ed., McGrawHill, NewYork (1992).
11 S. Motozuka, M. Tagaya, Y. Hotta, M. Morinaga, T. Ikoma, T. Honma, T. Daimon, and J. Tanaka, Mechanochemical Fabrication of Carbon Fiber/Nylon-6 Composites with Interfacial Bondings, Ind. Eng. Chem. Res., 52, 2182 (2013).   DOI
12 S. L. Chuang, N. J. Chu, and W. T. Whang, Effect of polyamic acids on interfacial shear strength in carbon fiber/aromatic thermoplastics, J. Appl. Polymer Sci., 41, 373 (1990).   DOI
13 S. Yumitori and Y. Nakanishi, Effect of anodic oxidation of coal tar pitch-based carbon fiber on adhesion in epoxy matrix: part 1 comparison between $H_2SO_4$ and NaOH solution, Composites Part A, 27A, 1051 (1996).
14 R. V. Subramanian et al., Electrodesposition of a Polymer Interphase in Carbon-Fiber Composites, Polym. Compos., 7, 201 (1986).   DOI
15 P. E. Vickers, J. F. Watts, C. Perruchot, and M. M. Chehimi, The surface chemistry and acid-base properties of a PAN-basedcarbon fibre, Carbon, 38, 675 (2000).   DOI
16 J. Gulya, E. Foldes, A. Lazar, and B. Pukanszky, Electrochemical oxidation of carbon fibres: surface chemistry and adhesion, Composites. Part A, 32, 353 (2001).   DOI
17 A. Fukunaga, S. Ueda, and M. Magumo, Anodic surface oxidation mechanisms of PAN-based and pitch-based carbon fibres, J. Mater. Sci., 34, 2851 (1999).   DOI
18 M. R. Alexander and F. R. Jones, Effect of electrolytic oxidation upon the surface chemistry of type A carbon fibres-Part II, analysis of derivatised surface functionalities by XPS, and TOF SIMS, Carbon, 33, 569 (1995).   DOI
19 M. Delamar, G. Desarmot, O. Fagebaume, R. Hitmi, J. Pinson, and J. M. Savent, Modification of carbon fiber surfaces by electrochemical reduction of aryl diazonium salts: Application to carbon epoxy composites, Carbon, 35, 801 (1997).   DOI
20 M. H. Choi, B. H. Jeon, and I. J. Chung, The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites, Polymer, 41, 3243 (2000).   DOI
21 M. A. Montes-Moran, A. Martinez-Alonso, J. M. D. Tascon, and R. J. Young, Effects of plasma oxidation on the surface and interfacial properties of ultra-high modulus carbon fibres, Composites. Part A., 32, 361 (2001).   DOI
22 J. Li, Effect of Fiber Surface Treatment on Wear Characteristics of Carbon Fiber Reinforced Polyamide 6 Composites, Iran. J. Chem. Chem. Eng., 29 (2010).
23 Y. S. Lee and B. K. Lee, Surface properties of oxyfluorinated PAN-based carbon fibers, Carbon, 40, 2461 (2002)   DOI
24 A. Fukunaga and S. Ueda, Anodic surface oxidation for pitch-based carbon fibers and the interfacial bond strengths in epoxy matrices, Compos. Sci. Technol., 60, 249 (2000).   DOI
25 C. H. Tessmer, R. D. Vidic, and L. J. Uranowski, Impact of Oxygen-Containing Surface Functional Groups on Activated Carbon Adsorption of Phenols, Environ. Sci. Tech., 31, 1872 (1997).   DOI
26 T. A. DeVilbiss, D. L. Messick, D. J. Messick, and J. P. Wightman, SEM/XPS analysis of fractured adhesively bonded graphite fibre-reinforced polyimide composites, Composites, 16, 207 (1985).   DOI
27 Y. S. Yu, Z. Wang, and Y. Zhao, Experimental and theoretical investigations of evaporation of sessile water droplet on hydrophobic surfaces, Adv. Colloid. Interface. Sci., 365, 254 (2012).   DOI
28 H. Yildirim Erbi, Evaporation of pure liquid sessile and spherical suspended drops: A review, Adv. Colloid. Interface. Sci., 170, 67 (2012).   DOI
29 X. P. Yang, C. Z. Wang, Y. H. Yu, and S. K. Ryu, Improvement of CF/ABS Composite Properties by Anodic Oxidation of Pitch based C-type Carbon Fiber, Carbon. Lett., 3, 80 (2002).
30 Y. Q. Wang, H. Viswanathan, A. A. Audi, and P. M. A. Sherwood, X-ray Photoelectron Spectroscopic Studies of Carbon Fiber Surfaces. 22. Comparison between Surface Treatment of Untreated and Previously Surface-Treated Fibers, Chem. Mater., 12, 1100 (2000).   DOI
31 G. Viswanadam and G. G. Chase, Contact angles of drops on curved superhydrophobic surfaces, J. Colloid. Interface. Sci., 367, 472 (2012).   DOI
32 S. J. Park, J. S. Oh, and J. R. Lee, Effect of Anodized Carbon Fiber Surfaces on Mechanical Interfacial Properties of Carbon Fibers-reinforced Composites, J. Korean Soc. Comp. Mater., 15, 16 (2002).
33 D. K. Owens and R. C. Wendt, Estimation of the surface free energy of polymers, J. Appl. Poly. Sci., 13, 1741 (1969).   DOI
34 S. J. Park, M. H. Kim, J. R. Lee, and S. W. Choi, Effect of FiberPolymer Interactions on Fracture Toughness Behavior of CarbonFiber-Reinforced Epoxy Matrix Composites, J. Colloid. Interface. Sci., 228, 287 (2000).   DOI
35 S. B. Rho and M. A. Lim, Determination of Contact Angle and Surface Free Energy of Polymer Powder by Wicking Method, Korean. Chem. Eng. Res., 36, 215 (1998).
36 F. M. Fowkes, Determination of interfacial tensions contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces, J. Phys. Chem., 66, 382 (1962).   DOI
37 C. J. Van Oss, R. F. Giese, Z. Li, K. Murphy, and K. Norris, M. K. Chaudhury, R. J. Good, Determination of contact angles and pore sizes of porous media by column and thin layer wicking, J. Adhesion. Sci. Technol., 6, 413 (1992).   DOI
38 R. J. Good, in Contact Angle, Wettability and Adhesion, K. L. Mittal, ed., VSP, Utrecht, Netherlands (1993).
39 S. J. Park, T. J. Kim, J. R. Lee, S. K. Hong, and Y. K. Kim, Influence of Sizing Agent on Interfacial Adhesion and Mechanical Properties of Glass Fiber/Unsaturated Polyester Composite, Korea Polym. J., 24, 326 (2000).
40 S. J. Park, J. S. Oh, and D. H. Suh, Influence of Ozone Treatment of Carbon Fibers on GIIC of Carbon Fiber-reinforced Composites, J. Korean Ind. Eng. Chem., 14, 586 (2003).
41 B. J. Kim and S. J. Park, Effects of carbonyl group formation on ammonia adsorption of porous carbon surfaces, J. Colloid. Int. Sci., 311, 311 (2007).   DOI
42 A. A. Griffith, The Phenomena of Rupture and Flow in Solids, Phil. Trans. R. Soc. Lond. A., 221, 163 (1920).
43 S. J. Park, J. S. Oh, and D. H. Suh, Crack Resistance Properties of Anodized Carbon Fibers/Epoxy Matrix Composites, Korean Chem. Eng. Res., 42, 102 (2004).
44 F. L. Jin and S. J. Park, Impact-strength improvement of epoxy resins reinforced with a biodegradable polymer, Mater. Sci. Eng. A., 478, 402 (2008).   DOI
45 S. J. Park, M. K. Seo, and J. R. Lee, Roles of interfaces between carbon fibers and epoxy matrix on interlaminar fracture toughness of composites, Compos. Interf., 13, 249 (2006).   DOI
46 K. Gotoh, in Polymer Surface Modification: Relevance to Adhesion, 3, K. L. Mittal, ed., VSP, Utrecht, Netherlands (2004).