• Title/Summary/Keyword: Oxidation stress

Search Result 397, Processing Time 0.024 seconds

Inhibitory Effect of Extract from Acanthocoris sordidus on Oxidative Damage (꽈리허리노린재(Acanthocoris sordidus) 추출물이 산화적 손상에 미치는 억제 효과)

  • Park, Young Mi;Lim, Jae Hwan;Lee, Jong Eun;Seo, Eul Won
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1078-1084
    • /
    • 2014
  • Here, we showed that Acanthocoris sordidus extract inhibited both cell and DNA damage caused by oxidative stress. In a radical scavenging assay, the scavenging activity of the A. sordidus extract against 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radicals was 48.9% and 37.8%, respectively, that of ascorbic acid, which was used as a positive control. The ferrous iron chelating activity of the A. sordidus extract was 80.0% compared to that when ethylenediaminetetraacetic acid (EDTA) was used a control. To verify the inhibitory effect of the extract on oxidative cell damage induced by reactive oxygen species (ROS), a lipid peroxidation assay was performed. The results showed that peroxidation was completely inhibited in an extract-treated group compared to a radical-treated group. The level of p21 protein expression was 68.1% that of a control sample. The DNA cleavage-inhibiting property of the A. sordidus extract-treated group was 53.3% that of a control group. Moreover, the phosphorylation of the H2AX protein was reduced to 39.0% of that treated with radical agents, indicating that the extract might inhibit the DNA damage that causes radical oxidation. Taken together, our findings suggest that the A. sordidus extract is effective not only in repressing oxidation by free oxygen radicals and hydroxyl radicals but also in decreasing cell and DNA damage caused by oxidative stress.

Effect of Graphene with Antioxidant Activity on Matrix Metalloproteinase in HT1080 Cells (항산화 활성을 가진 그래핀이 HT1080 세포에서 기질금속단백질분해효소에 미치는 영향)

  • Lee, Su-Gyeng;Kim, Moon-Moo;Oh, Yunghee
    • Journal of Life Science
    • /
    • v.23 no.10
    • /
    • pp.1209-1215
    • /
    • 2013
  • Graphene is an allotrope of carbon that is composed of one-atom-thick planar sheets. It is known to have a preventive effect on cancer in photothermal therapy and a protective effect in DNA oxidation. The effect of graphene on oxidative stress and matrix metalloproteinases (MMPs) was investigated in human fibrosarcoma HT1080 cells. The results showed that graphene specifically exerted an inhibitory effect on DNA oxidation, but it did not inhibit other oxidative stress. In addition, graphene decreased the expression and the activation of MMP-2 and MMP-9 stimulated by phenazine methosulfate-m, which induces the production of intracellular hydrogen peroxide. In particular, the expression of antioxidant enzymes, such as superoxide dismutase (SOD-2), was decreased in the HT1080 cells, indicating that the decrease in the expression level of SOD was due to the antioxidant effect of graphene. These results suggest that the inhibitory effect of oxidative stress in the presence of graphene could inhibit the expression of MMPs in HT1080 cells. Based on the above results, graphene may have chemoprevention properties through inhibition of MMP-2 and MMP-9 related to metastasis.

Hesperidin Attenuates Ultraviolet B-Induced Apoptosis by Mitigating Oxidative Stress in Human Keratinocytes

  • Hewage, Susara Ruwan Kumara Madduma;Piao, Mei Jing;Kang, Kyoung Ah;Ryu, Yea Seong;Han, Xia;Oh, Min Chang;Jung, Uhee;Kim, In Gyu;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.312-319
    • /
    • 2016
  • Human skin cells undergo pathophysiological processes via generation of reactive oxygen species (ROS) upon excessive exposure to ultraviolet B (UVB) radiation. This study investigated the ability of hesperidin ($C_{28}H_{34}O_{15}$) to prevent apoptosis due to oxidative stress generated through UVB-induced ROS. Hesperidin significantly scavenged ROS generated by UVB radiation, attenuated the oxidation of cellular macromolecules, established mitochondrial membrane polarization, and prevented the release of cytochrome c into the cytosol. Hesperidin downregulated expression of caspase-9, caspase-3, and Bcl-2-associated X protein, and upregulated expression of B-cell lymphoma 2. Hesperidin absorbed wavelengths of light within the UVB range. In summary, hesperidin shielded human keratinocytes from UVB radiation-induced damage and apoptosis via its antioxidant and UVB absorption properties.

Protective Effect of Green Tea Extracts on Oxidative Stress (녹차추출물의 산화적 스트레스에 대한 억제효과)

  • Kim, Nam-Yee;Lee, Jin-Ha;Heo, Moon-Yaung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.6
    • /
    • pp.322-328
    • /
    • 2006
  • Green tea is of particular source as it has been found to have strong antioxidant activities. The extracts of green tea during the commercial harvest seasons from April, 2003 to August, 2003 were compared. The purpose of this study was to determine the correlation between the polyphenol content of green teas and its antioxidant activities. The con-tent of total polyphenols was analyzed and several antioxidant testings were performed. The levels of total polyphenols were higher in the green teas (e.g. Woojeon, Sejak) harvested during very early spring and lower in the green teas harvested late(eg. Ipha, Yepcha). In particular, the free radical scavenging, the inhibition of LDL oxidation, the cytoprotective effect and the inhibition of DNA damage were correlated with the total polyphenol contents of green tea extracts harvested early spring such as Woojeon, Sejak and Jungjak. The results obtained here show that all extracts of green teas including purified green tea catechin, GTC, have strong antioxidant activities on oxidative stress in vifrθ. The variation in polyphenol content and antioxidant activities among various types of green tea by the harvesting time may provide critical information for investigators and consumers using tea in purposes of nutrition and chemoprevention.

$\alpha$-Phenyl-N-t-butylnitrone Protects Oxidative Damage to HepG2 Cells

  • Kim, Sun-Yee;Kim, Ryung-Hyo;Huh, Tae-Lin;Park, Jeen-Woo
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.43-46
    • /
    • 2001
  • $\alpha$-Phenyl-N-t-butylnitrone (PBN) is one of the most widely used spin-trapping compounds for investigating the existence of free radicals in biological systems. Recently, there has been considerable interest in the antioxidant nature of PBN on degenerative diseases, presumably related to oxidative stress. In the present study, the protective effect of PBN on the HepG2 cell line under oxidative stress was investigated. When the HepG2 cells were exposed to oxidant, such as hydrogen peroxide, menadione, or ethanol, the protective role of PBN was manifested as a reduction in trypan blue uptake and a decrease in the endogenous production of oxidants, as measured by the oxidation of 2',7'-dichlorodihydrofluorescin. The modulation of activity of major antioxidant enzymes, such as superoxide dismutase and catalase, was not significantly different either in the presence or in the absence of PBN. This indicates that PBN acts as a direct scavenger of reactive oxygen species.

  • PDF

Room Temperature Preparation of Electrolytic Silicon Thin Film as an Anode in Rechargeable Lithium Battery (실리콘 상온 전해 도금 박막 제조 및 전기화학적 특성 평가)

  • Kim, Eun-Ji;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • Silicon-based thin film was prepared at room temperature by an electrochemical deposition method and a feasibility study was conducted for its use as an anode material in a rechargeable lithium battery. The growth of the electrodeposits was mainly concentrated on the surface defects of the Cu substrate while that growth was trivial on the defect-free surface region. Intentional formation of random defects on the substrate by chemical etching led to uniform formation of deposits throughout the surface. The morphology of the electrodeposits reflected first the roughened surface of the substrate, but it became flattened as the deposition time increased, due primarily to the concentration of reduction current on the convex region of the deposits. The electrodeposits proved to be amorphous and to contain chlorine and carbon, together with silicon, indicating that the electrolyte is captured in the deposits during the fabrication process. The silicon in the deposits readily reacted with lithium, but thick deposits resulted in significant reaction overvoltage. The charge efficiency of oxidation (lithiation) to reduction (delithiation) was higher in the relatively thick deposit. This abnormal behavior needs to clarified in view of the thickness dependence of the internal residual stress and the relaxation tendency of the reaction-induced stress due to the porous structure of the deposits and the deposit components other than silicon.

Differential responses of two rice varieties to salt stress

  • Ghosh, N.;Adak, M.K.;Ghosh, P.D.;Gupta, S.;Sen Gupta, D.N.;Mandal, C.
    • Plant Biotechnology Reports
    • /
    • v.5 no.1
    • /
    • pp.89-103
    • /
    • 2011
  • Two rice varieties, viz. Nonabokra and Pokkali, have been evaluated for their responses to salinity in terms of some physiological and biochemical attributes. During the exposure to salinity (200 mM concentration of sodium chloride for 24, 48, and 72 h), a significant increase in sodium was recorded which was also concomitant with the changes of other metabolic profiles like proline, phenol, polyamine, etc. The protein oxidation was significantly increased and also varied between the two cultivars. The changes in activities of anti-oxidative enzymes under stress were significantly different to the control. The detrimental effects of salinity were also evident in terms of lipid peroxidation, chlorophyll content, protein profiles, and generation of free radicals; and these were more pronounced in Pokkali than in Nonabokra. The assessment and analysis of these physiological characters under salinity could unravel the mechanism of salt responses revealed in this present study and thus might be useful for selection of tolerant plant types under the above conditions of salinity.

Properties of the oxynitride films formed by thermal reoxidation in $N_2{O}$ gas ($N_2{O}$가스로 재산화시킨 oxynitride막의 특성)

  • 김태형;김창일;최동진;장의구
    • Electrical & Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.25-31
    • /
    • 1994
  • Properties of oxynitride films reoxidized by $N_2{O}$ gas after thermal oxidation and $N_2{O}$ oxide films directly oxidized by using $N_2{O}$ gas on the bare silicon wafer have been studied. From the AES analysis, nitrogen pile-up at the interface of Si/oxynitride and Si/$N_2{O}$ oxide has observed. $N_2{O}$ oxide and oxynitride films have the self-limited characteristics. Therefore, it will be possible to obtain ultra-thin films. Nitrogen pile-up at the interfaces of Si/oxynitride and Si/$N_2{O}$ oxide strengthens film structure and improves dielectric reliability. Although fixed charge densities and interface trap densities of N20 oxide and oxynitride films have somewhat higher than those of thermal $SiO_2{O}$, $N_2{O}$ oxide and oxynitride films showed improved I-V characteristics and constant current stress.

  • PDF

Quantitation of Formate in Plants and Its Enhancement in Response to Environmental Stresses

  • Kim, Jae-Kwang;Cho, Myoung-Rae;Baek, Hyung-Jin;Ryu, Tae-Hun;Kim, Jung-Bong;Kim, Jun-Heong;Kim, Myong-Jo;Yu, Chang-Yeon;Fukusaki, Ei-Ichiro;Kobayashi, Akio
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.211-214
    • /
    • 2007
  • A solid-phase microextraction and gas chromatography-mass spectrometry utilizing $^{13}C$-formate as an internal standard for the determination of formate was proved to be applicable as a reliable quantitative method in several plants. We were the first to discover that trees contain larger pool sizes of formate than herbs. Our data also showed that the formate level of the leaves increased after the methanol-spraying, suggesting that methanol oxidation could convert formaldehyde into formate. In addition, drought and chilling led to the increase of endogenous formate in Arabidospsis thaliana. These results confirmed that formate is a universal stress signal in plants.

Current Status and Prospects of Quality Evaluation in Sesame (참깨의 품질평가 현황과 전망)

  • 류수노;김관수;이은정
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.140-149
    • /
    • 2002
  • Sesame (Sesamum indicum L.) is probably the most ancient oilseed crop known in the world. Sesame seed is known for its high nutritional value and for having oil (51%) and protein (20%) content. The fatty acid composition of sesame oil is palmitic acid (7.8%), stearic acid (3.6%), oleic acid (45.3%), and linoleic acid (37.7%). Sesame oil is characterized by a very high oxidative stability compared with other vegetable oils. Two lignan-type compounds, sesamin and sesamolin, are the major constituents of sesame oil unsaponifiables. Sesamol (a sesamolin derivative) can be present in sesame seeds and oils in very small amount. Other lignans and sesamol are also present in sesame seeds and oils in very small amount as aglycones. Lipid oxidation activity was significantly lower in the sesamolin-fed rats, which suggests that sesamolin and its metabolites contribute to the antioxidative properties of sesame seeds and oil and support that sesame lignans reduce susceptibility to oxidative stress. Sesaminols strongly inhibit lipid peroxidation related to their ability to scavenge free radical. The sesame seed lignan act synergistically with vitamin I in rats fed a low $\alpha$-tocopherol diet and cause a marked increase in a u-tocopherol concentration in the blood and tissue of rats fed an $\alpha$-tocopherol containing diet with sesame seed or its lignan. The authors are reviewed and discussed for present status and prospects of quality evaluation and researched in sesame seeds to provide and refers the condensed informations on their quality.