• Title/Summary/Keyword: Oxidation resistant

Search Result 122, Processing Time 0.023 seconds

Thermal Aging Behaviors of Weather Resistant Rubber Composites of EPDM, IIR, and BIIR (EPDM, IIR, 그리고 BIIR 내후성 고무 복합체의 열노화 거동)

  • Choi, Sung-Seen;Kim, Jong-Chul
    • Elastomers and Composites
    • /
    • v.47 no.2
    • /
    • pp.148-155
    • /
    • 2012
  • EPDM, IIR, and BIIR composites were thermally aged and the crosslink density changes were investigated. Crosslink densities of the EPDM composite increased with increasing the aging time and temperature, whereas those of IIR and BIIR composites for long-term aging at high temperatures tended to decrease. Activation energies for the crosslink density changes of the EPDM composite were higher than those of the BIIR one. The experimental results were explained with the number of allylic hydrogens, activation of the zinc complex, the steric hindrance effect, and oxidation of rubber chain.

A Study on Wear Characteristics of Machine Structural Steel by Surface Modification (표면개질에 의한 기계구조용강의 마멸특성에 관한 연구)

  • Park Heung-Sik;Woo Kyu-Sung
    • Tribology and Lubricants
    • /
    • v.22 no.2
    • /
    • pp.73-78
    • /
    • 2006
  • The surface modification of automobile parts is of great technological importance for the improvement of corrosion resistance, wear resistance, fatigue strength and so on. Recently, research on the development of the technology of surface modification substituting 6-balance chrome process has progressively been achieved in automobile parts. Although the innovation technology for the improvement of the corrosion-resisting and wear resistant properties through post oxidation after nitrocarburising process had attracted a great attention. For this, anodically potentiodynamic polarisation testing was carried out to corrosion resistance and friction and wear experiment according to applied load and sliding distance was carried out to evaluate the wear resistance of machine structural steel with nitrocarburising and non-nitrocarburising SM45C. The presumed wear volume was calculated with the image processing far evaluation of wear resistance of two materials. The results show that the nitrocarburising had a distinguished corrosion resistance and wear resistance than non-nitrocarburising.

The Effect of Alloying Elements on Weldability and Corrosion Resistance of Austenitic Stainless Steels(I) (오스테나이트계 스테인리스강의 용접성과 내식성에 미치는 합금원소의 영향(I) - 응고균열 감수성을 중심으로 -)

  • Jeong, Ho-Shin;Lee, Yun-Young;Bae, Dong-Soo
    • Journal of Welding and Joining
    • /
    • v.30 no.3
    • /
    • pp.57-65
    • /
    • 2012
  • The interest of austenitic heat resistant stainless steels containing high Si has increased because they have higher resistance of oxidation and higher strength at high temperature than STS 310. This study carried out Varestraint test for evaluation of solidification cracking sensitivity of 14 different stainless steels. As a result of Varestraint test, all specimens solidified as primary ferrite, and solidification crack sensitivity increased with adding $N_2$ to shielding gas. Nb and W had beneficial effect on solidification crack resistance in case of less than FN 2 containing, but crack sensitivity increased with Nb and W in case of more than FN 2. Ce had beneficial effect on solidification crack resistance but impaired weld bead appearance.

Hydrophilic Finish of Polyester Fabrics using Sericin Finishing Agents (세리신 가공제에 의한 폴리에스터 직물의 친수화 가공)

  • Park, In-Woo;Hwang, Gye-Soon;Hong, Young-Ki;Bae, Han-Soo;Bae, Kie-Seo
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • First of all, the properties imparted to PET fabrics are resistance to and recovery from creasing or wrinkling when wet or dry; high resistance to stretch in the filament yarns but not in the staple; high abrasion resistance; good texture and appearance; resistance to heat ageing; good chemical resistance and good resistance, behind glass, to sunlight. But, the low moisture regain of PET fabric conduces to static troubles in textile processing. Furthermore, garments made from PET may, during wear, develop electric charges which attract to the fabric particles of soil(dirt, swarf, dust) flying in the air, so that the cuffs of shirts, for example, become soiled quickly and are not easily laundered clean. The sericin constitutes 25$\sim$30% of silk protein and surrounds the fibroin fiber with sticky layer that supports the formation of a cocoon. The useful biochemical properties of sericin protein are oxidation resistant, antibacterial, UV resistant, hydrophilic property, and good affinity with hydrophobic material. These properties can be used as an improving reagent or a coating agent for natural and synthetic fibers, fabrics, and other intermediate products. The sericin is also applied to cross-link, and can be blended with other materials. In this study, we modified the surface of PET fabric by mixture of sericin finishing agent; sericin, polyuretane binder and 1,2,3,4-butanetetracarboxylic acid (BTCA) cross-link agent. Also, we investigated the finshing effect; moisture regain, stiffness, handle, drape and electrostatic. The moisture regain of PET fabric treated with sericin finishing agent was higher than that of untreated PET fabric. As a result of evaluating influence about handle of PET fabrics treated with sericin finishing agent, it was confirmed that the sericin finishing agent could be use as a linen like finishing agent.

Geochemical Behavior and Occurrence of Surface Oxidized Materials on the Stone Cultural Heritage: Iksan Mireuksaji Stone Pagoda (석조문화재 표면 산화물의 산출상태와 지구화학적 거동: 익산 미륵사지 석탑)

  • Lee, Dong-Sik;Lee, Chan-Hee;Yang, Hee-Jae;Choi, Ki-Young
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.375-387
    • /
    • 2007
  • The Iksan Mireuksaji stone pagoda, designated as national treasure No. 11 in Korea, has been in the process of disassembling for reconstruction as part of the cultural heritage conservation program. The pagoda is mainly consisting of granite, which is relatively resistant to weathering. However, it has lost its original rock color due to various contaminants deposited at the surface since it exposed to the atmospheric environment long time. In this research, we categorized the secondary inorganic contaminants into the genetic type, and also quantitatively examined occurrences and types of pollutants in the oxidation area of the pagoda surface in which the area is clearly distinguished by naked eyes. Geochemical behavior of soluble pollutants through reaction experiments are demonstrated, and effective methods of cleaning for the conservation and scientific applicability of the surface cleaner are also studied.

Production and Characterization of a Monoclonal Antibody against Surface Glycoprotein, gp6 1, on K562 Erythroleukemia Cells (K562 적혈구암 세포주의 표면 당단백질에 대한 단클론항체의 생성 및 특성)

  • 김한도;정재훈;홍선화;김정락;한규형;임운기;유미애;이경희;강호성
    • The Korean Journal of Zoology
    • /
    • v.39 no.1
    • /
    • pp.12-20
    • /
    • 1996
  • A multipotential hematopojetic cell line, 1(562 cell, was differentiated into megakaryocyte by a chemical inducer, PMA, with an enhanced expression of gpIlla accompaning with a distinct morphological change. On the other hand, 1(562 cells were differentiated into erythrocytes by other chemical inducers, DMSO or butyrate, with a concomitant increase in hemoglobin accumulation. An antigen of apparent molecular weight of 61 kDa was identified on the surface of 1(562 cells by using monoclonal antibody raised against 1(562 cells. The antigen was considered to be a glycoprotein molecule rich in sialic acids and the epitope of antigen was sensitive to neuraminidase digestion or peroxidase oxidation, but resistant to heat treatment. The 61 kDa surface antigen was increased or decreased in its expression along differentiation of 1(562 cells into megakaryocytes or erythrocytes, respedively.

  • PDF

Heat Resistant Low Emissivity Oxide Coating on Stainless Steel Metal Surface and Characterization of Emissivity (스테인리스강 금속 표면에 내열 저방사 산화물 코팅제 적용과 방사 특성 평가)

  • Lim, Hyung-Mi;Kwon, Tae-Il;Kim, Dae-Sung;Lee, Sang-Yup;Kang, Dong-Pil;Lee, Seung-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.649-656
    • /
    • 2009
  • Inorganic oxide colloids dispersed in alcohol were applied to a stainless steel substrate to produce oxide coatings for the purpose of minimizing emissive thermal transfer. The microstructure, roughness, infrared emissive energy, and surface heat loss of the coated substrate were observed with a variation of the nano oxide sol and coating method. It was found that the indium tin oxide, antimony tin oxide, magnesium oxide, silica, titania sol coatings may reduce surface heat loss of the stainless steel at 300${\circ}C$. It was possible to suppress thermal oxidation of the substrate with the oxide sol coatings during an accelerated thermal durability test at 600${\circ}C$. The silica sol coating was most effective to suppress thermal oxidation at 600${\circ}C$, so that it is useful to prevent the increase of radiative surface heat loss as a heating element. Therefore, the inorganic oxide sol coatings may be applied to improve energy efficiency of the substrate as the heating element.

Microstructural Characteristics of Oxidation Resistant Cr-Si-Al alloys in Cast State and after High Temperature Heating (내산화성 Cr-Si-Al합금의 주조상태 및 고온가열 후의 미세조직 특성)

  • Kim, Jeong-Min;Kim, Chae-Young;Yang, Won-Chul;Park, Joon-Sik
    • Korean Journal of Materials Research
    • /
    • v.31 no.3
    • /
    • pp.156-161
    • /
    • 2021
  • Cr-Si based alloys are not only excellent in corrosion resistance at high temperatures, but also have good wear resistance due to the formation of Cr3Si phase, therefore they are promising as metallic coating materials. Aluminum is often added to Cr-Si alloys to improve the oxidation resistance through which stable alumina surface film is formed. On the other hand, due to the addition of aluminum, various Al-containing phases may be formed and may negatively affect the heat resistance of the Cr-Si-Al alloys, so detailed investigation is required. In this study, two Cr-Si-Al alloys (high-Si & high-Al) were prepared in the form of cast ingots through a vacuum arc melting process and the microstructural changes after high temperature heating process were investigated. In the case of the cast high-Si alloy, a considerable amount of Cr3Si phase was formed, and its hardness was significantly higher than that of the cast high-Al alloy. Also, Al-rich phases (with the high Al/Cr ratio) were not found much compared to the high-Al alloy. Meanwhile, it was observed that the amount of the Al-rich phases reduced by the annealing heat treatment for both alloys. In the case of the high temperature heating at 1,400 ℃, no significant microstructural change was observed in the high Si alloy, but a little more coarse and segregated AlCr phases were found in the high Al alloy compared to the cast state.

Industrial application of WC-TiAlN nanocomposite films synthesized by cathodic arc ion plating system on PCB drill

  • Lee, Ho. Y.;Kyung. H. Nam;Joo. S. Yoon;Jeon. G. Han;Young. H. Jun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.06a
    • /
    • pp.3-3
    • /
    • 2001
  • Recently TiN, TiAlN, CrN hardcoatings have adapted many industrial application such as die, mold and cutting tools because of good wear resistant and thermal stability. However, in terms of high speed process, general hard coatings have been limited by oxidation and thermal hardness drop. Especially in the case of PCB drill, high speed cutting and without lubricant process condition have not adapted these coatings until now. Therefore more recently, superhard nanocomposite coating which have superhard and good thermal stability have developed. In previous works, WC-TiAlN new nanocomposite film was investigated by cathodic arc ion plating system. Control of AI concentration, WC-TiAlN multi layer composite coating with controlled microstructure was carried out and provides additional enhancement of mechanical properties as well as oxidation resistance at elevated temperature. It is noted that microhardness ofWC-TiA1N multi layer composite coating increased up to 50 Gpa and got thermal stability about $900^{\circ}C$. In this study WC-TiAlN nanocomposite coating was deposited on PCB drill for enhancement of life time. The parameter was A1 concentration and plasma cleaning time for edge sharpness maintaining. The characteristic of WC-TiAlN film formation and wear behaviors are discussed with data from AlES, XRD, EDS and SEM analysis. Through field test, enhancement of life time for PCB drill was measured.

  • PDF

Fabrication and Characterization of Environmental Barrier Coatings by Spray Drying and Atmospheric Plasma Spraying for Protection of Silicon Carbide Ceramics (분무건조 및 대기 플라즈마 용사에 의한 탄화규소 세라믹스용 내환경 코팅재의 제조 및 평가)

  • Feng, Fan Jie;Moon, Heung Soo;Kwak, Chan Won;Park, Ji Yeon;Lee, Kee Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.481-486
    • /
    • 2014
  • Environmental barrier coatings (EBCs) are used to protect SiC-based ceramics or composites from oxidation and corrosion due to reaction with oxygen and water vapour at high temperatures above $1000^{\circ}C$. Mullite ceramics have been studied for environmental barrier coatings for Si-based ceramics. More recently, rare earth silicate ceramics have been identified as more water vapour-resistant materials than mullite for environmental barrier coatings. In this study, we fabricate mullite and yttrium silicate ceramics by an atmospheric plasma spray coating method using spherical granules fabricated by spray drying. As a result, EBCs with thicknesses in the range of $200-300{\mu}m$ are successfully fabricated without any macroscopic cracks or interfacial delamination. Phase and microstructure analysis are conducted, and the basic mechanical properties, such as hardness and indentation load-displacement curves are evaluated.