• Title/Summary/Keyword: Oxidation of sulfides

Search Result 49, Processing Time 0.023 seconds

Mineralogy and Genesis of Manganese Ores from the Buncheon Mine, Korea (분천광산(汾川鑛山)의 망간광석(鑛石)에 대(對)한 광물학적(鑛物學的) 및 성인적(成因的) 연구(硏究))

  • Kim, Soo Jin;Son, Byong Kook
    • Economic and Environmental Geology
    • /
    • v.17 no.4
    • /
    • pp.273-282
    • /
    • 1984
  • The Buncheon manganese ore deposits occur in vein along the fault of $N20^{\circ}E$, cutting the foliation of Yulri Series. The deposits consist of primary manganese silicate ores in the deeper part and superficial manganese oxide ores near the surface. The spatial distribution of manganese oxide ores with respect to the manganese silicate ores suggests that the manganese oxide ores are the supergene oxidation product of the manganese silicate ores. Manganese silicate ores consist mainly of fine-to coarse-grained pyroxmangite with minor rhodochrosite, quartz, sulfides and chlorite. Manganese oxide ores are composed of supergene manganese oxides such as nsutite, birnessite, manganite and todorokite, and other associated minerals. Paragenetic sequence of formation of the manganese minerals are as follows: $\array{{rhodochrosite{_{\rightarrow}^o}todorokite{_{\searro}^o}}\\pyroxmangite{_{\line(10){90}}^o}{\nearro}}birnessite{_{\rightarrow}^o}nsutite{_{\rightarrow}^s}manganite$ In order to elucidate the mineralogy of the manganese minerals, microscopic, X-ray, IR spectroscopic, and thermal studies were made for manganese and associated minerals.

  • PDF

Arsenic Occurrence in Groundwater of Korea (국내 지하수의 비소 산출양상)

  • Ahn, Joo-Sung;Ko, Kyung-Seok;Chon, Chul-Min
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.64-72
    • /
    • 2007
  • Nationwide occurrence of arsenic in groundwater of Korea was investigated with the data from the groundwater quality monitoring stations. During 2001-2006, As has been quantitatively detected in 3.0 % of the total wells $(5.0{\sim}188{\mu}g/L)$, and its geographical distribution suggests 3 groups: an urbanized and industrialized area (Seoul and its neighbouring province), and two naturally occurring areas (Chungbuk and Gyeongnam provinces). Natural occurrence of As appears to be geologically related with Ogcheon metasedimentary rocks and Cretaceous volcanic rocks. Based on the results of the previous studies in the high As sites, the oxidation of sulfides can be a major control on As concentrations in groundwater in the mineralized and altered zone within the area of Cretaceous volcanic rocks. Desorption process under slightly high pH conditions may also be responsible for high As in groundwater in areas of Ogcheon metasedimentary rocks.

Biotic and Abiotic Reduction of Goethite (α-FeOOH) by Subsurface Microorganisms in the Presence of Electron Donor and Sulfate (전자공여체와 황산염 이용 토착미생물에 의한 침철석(α-FeOOH) 환원 연구)

  • Kwon, Man Jae;Yang, Jung-Seok;Shim, Moo Joon;Lee, Seunghak;Boyanov, Maxim;Kemner, Kenneth;O'Loughlin, Edward
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.54-62
    • /
    • 2014
  • To better understand dissimilatory iron and sulfate reduction (DIR and DSR) by subsurface microorganisms, we investigated the effects of sulfate and electron donors on the microbial goethite (${\alpha}$-FeOOH) reduction. Batch systems were created 1) with acetate or glucose (donor), 2) with goethite and sulfate (acceptor), and 3) with aquifer sediment (microbial source). With 0.2 mM sulfate, goethite reduction coupled with acetate oxidation was limited. However, with 10 mM sulfate, 8 mM goethite reduction occurred with complete sulfate reduction and x-ray absorption fine-structure analysis indicated the formation of iron sulfide. This suggests that goethite reduction was due to the sulfide species produced by DSR bacteria rather than direct microbial reaction by DIR bacteria. Both acetate and glucose promoted goethite reduction. The rate of goethite reduction was faster with glucose, while the extent of goethite reduction was higher with acetate. Sulfate reduction (10 mM) occurred only with acetate. The results suggest that glucose-fermenting bacteria rapidly stimulated goethite reduction, but acetate-oxidizing DSR bacteria reduced goethite indirectly by producing sulfides. This study suggests that the availability of specific electron donor and sulfate significantly influence microbial community activities as well as goethite transformation, which should be considered for the bioremediation of contaminated environments.

The Petrochemical and Structural Study on the Charyong Batholith and its Associated Metallic Deposits (차령화강암(車嶺花崗岩) 저반(底盤)과 이에 관련된 금속광상(金屬鑛床)의 암석학적(岩石學的) 및 지질구조적(地質構造的) 연구(硏究))

  • Kim, Ok Joon
    • Economic and Environmental Geology
    • /
    • v.10 no.3
    • /
    • pp.107-117
    • /
    • 1977
  • The Charyong batholith extends northeasterly from the west coast to the west of Wonju in the central parts of Korean Penninsula. The batholith is separated by the metamorphic complex into the northern and the southern granites. and is believed to intrude during the Daebo orogeny of early Jurassic to early Cretaceous age. It constitutes a sort of anticlinorium and the metamorphic complex can be regarded as a huge roof pendant. The modal analysis indicates that the Charyong batholith belongs to a series of adamellite-granodiorte-to-nalite. The oxidation property happened during a magmatic segregation reveals that the batholith shows in general orogenic assimilation trend. The granites of early to middle Jurassic age show orogenic assimilation trend, whereas those of late Jurassic to early Cretaceous age post orogenic noassimilation trend. The fracture system of the whole region is two folds: the fractures having attitute of $N25{\sim}40^{\circ}E$ and $70^{\circ}SE$ are regarded as tension fractures, and those of NS, and 50E to vertical and $N50^{\circ}E$ and $80^{\circ}E$ to vertical as shear fractures. All these facts suggest definitely that the Charyong batholith is the syntectonic intrusives during the Daebo orogeny. The mineral deposits in the area studied are gold-silver deposits in majority which was named by O,J.Kim(1970) as the Chonan metallogenic province. They are sulfides baring quartz veins which were emplaced along the tension and shear fractures originated by the Daebo orogeny.

  • PDF

Inhibition of Growth and Activity of Iron Oxidizing Bacteria for the Prevention of Acid Mine Drainage Production (철산화 박테리아의 생장 및 활성 억제를 통한 산성광산배수의 발생 저감)

  • Park, Youngtae;Yang, Jungseok;Kwon, Manjae;Yun, Hyunshik;Ji, Minkyu;Jee, Eundo;Lee, Wooram;Ji, Wonhyun;Kwon, Hyunho;Choi, Jaeyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.5-11
    • /
    • 2012
  • Acid mine drainage (AMD) is one of the most severe environmental problem that results from the oxidation of pyrite $(FeS_2)$ and various other metal sulfides. In this study, the influence of microorganism was tested on the process where AMD was released and the method to inhibit AMD generated by microorganisms at abandoned mine area. The activity and growth rate of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, common microorganisms affecting AMD occurrence, were measured. Chlorine dioxide $(ClO_2)$, NaCl, or surfactant (ASOR-770) was used as an inhibitor for working on activity and growth of microorganism. Among the three inhibitors, 10ppm of chlorine dioxide was the most effective inhibitor for AMD control due to the reduced the activity and growth of microorganisms by 20%.

The Acid Rock Drainage and Hydraulic Characteristics of the Waste Rock Dump (폐석적치장의 산성배수발생 및 수리특성 분석)

  • Cheong, Young Wook;Ji, Sang Woo;Yim, Gil Jae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.4
    • /
    • pp.13-24
    • /
    • 2004
  • This study was carried out to plan the prevention of the generation and discharge of Acid Rock Drainage (ARD). The Acid Base Accounting(ABA) test was performed for geological materials such as pit wall, waste rock and stream sediments near the Imgi abandoned pyrophyllite mine in Busan, Korea. In addition, hydraulic characteristics were tested with the disk tension infiltrometer around the waste rock dump. Maximum Potential Acidity(MPA) of geological materials near the Imgi mine was 246.942kg $H_2SO_4/t$, and maximum Acid Neutralising Capacity(ANC) was 8.7kg $H_2SO_4/t$. These results indicate the pit wall and waste rock, except most of stream sediments are acid generating geological materials. These have salt and free hydrogen ion which resulted from oxidation of sulfides. Hence they could be convert rain water to acid rock drainage. Although the waste rock dump of the Imgi mine have very low infiltration rate, slopes of the waste rock dump have many "V" type erosion gullies and multi-layers. These gullies and multi-layers have coarse clastic particle layers which have very large hydraulic conductivity. Through this coarse clastic particle layer a large part of rain flow into ground. And also this layer could function as aeration path which induced oxidation of sulfide minerals and generation of ARD continuously.

  • PDF

Effect of Long Term Buchu (Chinese chives) Diet on Antioxidative System of ICR Mice (장기간의 부추식이가 ICR 마우스의 항산화시스템에 미치는 영향)

  • 이민자;류복미;이유순;문갑순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.5
    • /
    • pp.834-839
    • /
    • 2002
  • To evaluate the antioxidative and antiaging effects of buchu in vivo system, 2% or 5% buchu diets were fed to ICR mice for 13 months and lipid peroxidation, protein oxidation, activities of antioxidative enzymes and total glutathione content on liver were measured. Hepatic TBARS contents did not show differences among diet groups, while buchu diet suppressed the protein oxidation significantly. SOD activities of control diet group decreased slowly after 7 month but buchu diet increased its activities steeply for first 3 month and continued to increase twice or three times higher than control diet during 13 month. While GSH-Px activities of control diet group were increased slightly with age, buchu diet increased its activities twice or three times higher than control. While catalase activities of control diet group were almost not changed with age, buchu diet increased its activities in both 2% and 5% diet groups. Total hepatic glutathione contents were gradually increased with age, while buchu diets In-creased its contents remarkably. According to this study, many antioxidative materials and sulfides compounds containing buchu seems to protect antioxidative systems on ICR mice.

Characterization of Arsenic Immobilization in the Myungbong Mine Tailing (명봉광산의 광미 내 비소의 고정화 특성 연구)

  • Lee, Woo-Chun;Jeong, Jong-Ok;Kim, Ju-Yong;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.137-148
    • /
    • 2010
  • The Myoungbong mine located in Boseong-gun, Jellanamdo consists of Au-Ag bearing quartz veins which filled the fissures of Bulguksa granitic rocks of Cretaceous. The tailings obtained from the Myungbong mine were used to investigate the effects of various processes, such as oxidation of primary sulfides and formation(alteration) of secondary and/or tertiary minerals, on arsenic immobilization in tailings. This study was conducted via both mineralogical and chemical methods. Mineralogical methods used included gravity and magnetic separation, ultrasonic cleaning, and instrumental analyses(X-ray diffractometry, energy-dispersive spectroscopy, and electron probe microanalyzer) and aqua regia extraction technique for soils was applied to determine the elemental concentrations in the tailings. Iron (oxy)hydroxides formed as a result of oxidation of tailings were identified as three specific forms. The first form filled in rims and fissures of primary pyrites. The second one precipitated and coated the surfaces of gangue minerals and the final form was altered into yukonites. Initially, large amounts of acid-generating minerals, such as pyrite and arsenopyrite, might make the rapid progress of oxidation reactions, and lots of secondary minerals including iron (oxy)hydroxides and scorodite were formed. The rate of pH decrease in tailings diminished, in addition, as the exposure time of tailings to oxidation environments was prolonged and the acid-generating minerals were depleted. Rather, it is speculated that the pH of tailings increased, as the contribution of pH neutralization reactions by calcite contained in surrounding parental rocks became larger. The stability of secondary minerals, such as scorodite, were deteriorated due to the increase in pH, and finally arsenic might be leached out. Subsequently, calcimn and arsenic ions dissociated from calcites and scorodites were locally concentrated, and yukonite could be grown tertiarily. It is confirmed that this tertiary yukonite which is one of arsenate minerals and contains arsenic in high level plays a crucial role in immobilizing arsenic in tailings. In addition to immobilization of arsenic in yukonites, the results indicate that a huge amount of iron (oxy)hydroxides formed by weathering of pyrite which is one of typical primary minerals in tailings can strongly control arsenic behavior as well. Consequently, this study elucidates that through a sequence of various processes, arsenic which was leached out as a result of weathering of primary minerals, such as arsenopyrite, and/or redissolved from secondary minerals, such as scorodite, might be immobilized by various sorption reactions including adsorption, coprecipiation, and absorption.

A Mineralogical Study on the Arsenic Behavior in the Tailings of Nakdong Mine (낙동광산의 광미 내 비소 거동에 대한 광물학적 연구)

  • Lee, Woo-Chun;Cho, Hyen-Goo;Kim, Young-Ho;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.359-370
    • /
    • 2009
  • Arsenic and heavy metals leached out as a result of oxidation of tailings exposed to the surface pose a serious environmental contamination of mine areas. This study investigated how arsenic behavior is controlled by a variety of processes, such as oxidation of sulfides and formation or alteration of secondary minerals, based on mineralogical methods. The study was carried out using the tailing samples obtained from Nakdong mine located in Jeongseongun, Gangwondo. After separating magnetic and non-magnetic minerals using pretreated tailing samples, each mineral sample was classified according to their colors and metallic lusters observed by the stereoscopic microscope. Subsequently, the mineralogical properties were determined using various instrumental analyses, such as x-ray diffractometer (XRD), energy dispersive spectroscopy (EDS), and electron probe micro analyzer (EPMA). The literature review confirmed that various ore minerals were identified in the Nakdong ore deposits. In this study, however, there were observed a few original ore minerals as well as secondary and/or tertiary minerals newly formed as a result of weathering including oxidation. In particular, we did not recognize pyrrhotite which has been known to originally exist in a large abundance, but peculiarly colloform-type iron (oxy)hydroxides were identified, which indicates most of pyrrhotite has been altered by rapid weathering due to its large reactivity. In addition, a secondary scorodites filling the fissure of weathered primary arsenopyrites were identified, and it is speculated that arsenic is immobilized through such a alteration reaction. Also, we observed tertiary iron (oxy)hydroxides were formed as a result of re-alteration of secondary jarosites, and it suggests that the environment of tailing has been changed to high pH from low pH condition which was initiated and developed by oxidation reactions of diverse primary ore minerals. The environmental change is mainly attributed to interactions between secondary minerals and parental rocks around the mine. As a result, not only was the stability of secondary minerals declined, but tertiary minerals were newly formed. As such a process goes through, arsenic which was immobilized is likely to re-dissolve and disperse into surrounding environments.

Estimation of verticle fluxes of nitrogen compounds in tidal flats of the Keum river estuary (금강하구 갯벌내 질소화합물질의 연직적인 플럭스 평가)

  • Kim Do Hee;Yang Jae Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.2
    • /
    • pp.3-10
    • /
    • 2000
  • The main purpose of this study were to estimate the benthic fluxes of dissolved inorganic nitrogen (DIN) from the sediment and denitrification rates in tidal flats of the Keum river estuary. Sediment specimens were collected by a core sampler from three stations along the Keum river estuary in April, August and December, 1999. The sediments were composed of 1.18 %, 29.34 % and 69.49 % of gravel and sand, sand and silt, respectively. The mean ignition loss of the sediment was found 6.7 % and its Oxidation Reduction Potential (ORP) was measured -12 mV. The total hydrogen sulfides was determined about 0.26 mg/gㆍdry. The estimated outflux of ammonium was found 11.2 m mole N/m²ㆍday from the sediment, whereas -1.09 m mole N/m²ㆍday of influx was obtained for nitrate and nitrite through the incubation experiment of sediment cores. Total DIN flux was 10.2 m mole N/m²ㆍday outflux from the sediment. From the incubation experiments executed with the flux studies, mean denitrification rate was found 30.6 m mole N₂/m²ㆍday measured by the direct assay of N₂ production technique. On the basis that DIN flux and denitrification rate in sediment of tidal flat of the Keum river estuary are may be effects to control the algal biomass in the coastal environment, it seems inevitable to pay more attention to investigate the flux of DIN and denitrification rate in tidal flat of the Keum river estuary.

  • PDF