• Title/Summary/Keyword: Oxidation kinetics

Search Result 271, Processing Time 0.024 seconds

Tyrosinase Inhibitors Isolated from the Edible Brown Alga Ecklonia stolonifera

  • Kang, Hye-Sook;Kim, Hyung-Rak;Byun, Dae-Seok;Son, Byeng-Wha;Nam, Taek-Jeong;Choi , Jae-Sue
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1226-1232
    • /
    • 2004
  • Extracts from seventeen seaweeds were determined for tyrosinase inhibitory activity using mushroom tyrosinase with L-tyrosine as a substrate. Only one of them, Ecklonia stolonifera OKAMURA (Laminariaceae) belonging to brown algae, showed high tyrosinase inhibitory activity. Bioassay-guided fractionation of the active ethyl acetate (EtOAc) soluble fraction from the methanolic extract of E. stolonifera, led us to the isolation of phloroglucinol derivatives [phloroglucinol (1), eckstolonol (2), eckol (3), phlorofucofuroeckol A (4), and dieckol (5)]. Compounds 1~5 were found to inhibit the oxidation of L-tyrosine catalyzed by mushroom tyrosinase with $IC_{50}$ values of 92.8, 126, 33.2, 177, and 2.16 ${\mu}g$ /mL, respectively. It was compared with those of kojic acid and arbutin, well-known tyrosinase inhibitors, with $IC_{50}$ values of 6.32 and 112 ${\mu}g$ / mL, respectively. The inhibitory kinetics analyzed from Lineweaver-Burk plots, showed compounds 1 and 2 to be competitive inhibitors with $K_i$ of $2.3{\times}10^{-4}\;and\;3.1{times}10^{-4}$ M, and compounds 3~5 to be noncompetitive inhibitors with $K_i$ of $1.9{\times}10^{-5},\;1.4{\times}10^{-3}\;and\;1.5{\times}10^{-5}$ M, respectively. This work showed that phloroglucinol derivatives, natural compounds found in brown algae, could be involved in the control of pigmentation in plants and other organisms through inhibition of tyrosinase activity using L-tyrosine as a substrate.

Stabilization Characteristics of the Pyrolyzed Oil from Waste Lubricating Oil (폐윤활유 열분해유의 안정화 특성 연구)

  • Kim, Seung-Soo;Kim, Young-Seok;Chun, Byung-Hee;Park, Chan Jin;Yoon, Wang Lai;Kim, Sung Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1055-1061
    • /
    • 2000
  • The kinetics of tar formation has been studied experimentally and modeled mathematically for waste lubricating oil after pyrolyzed at batch reactor. And stabilization of pyrolyzed oil has been studied. A combination of series and parallel reaction was assumed for the mechanism of tar formation. From the proposed kinetic model, pyrolyzed oil to tar was found to be rate limiting step for tar formation. It was found that the fly ash and coke had the ability to remove materials of tar formation and to protect oxidation of pyrolyzed oil.

  • PDF

The Recovery of Silver from Thiourea Leaching Solution by Cementation Technique (침전법을 이용한 Thiourea 용출용액으로부터 Silver 회수)

  • Kim, Bong-Ju;Cho, Kang-Hee;Choi, Nag-Choul;Park, Cheon-Young
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.29-37
    • /
    • 2013
  • In order to apply the silver cementation method using Fe powder from pregnant thiourea leaching solution. Parameters such as the amount of Fe powder addition, agitation speed, and temperature were investigated. The silver cementation rate was increased by the increasing of Fe powder addition, agitation speed, and temperature. The highest silver cementation rate was found when the addition of Fe powder was 50 g/L at the agitation speed of 500 rpm. The silver cementation rate increase with increasing temperature according to the Arrhenius equation and obeys $1^{st}$ order kinetics. The activation energy from the kinetics data was found to be between 13.73 KJ/mol and 17.02 KJ/mol. In the XRD analysis, goethite was detected in the precipitate of the thiourea leach solution. This indicates that an oxidation-reduction reaction had occurred in the thiourea solution due to the addition of the Fe powder.

Determination of the Optimum NH$_3$-N/NO$_2$-N Ratio by Anaerobic Batch Test in Anaerobic Ammonium Oxidation Process (혐기성 암모늄 산화공정에서 혐기성 회분식 실험에 의한 NH$_3$-N/NO$_2$-N의 최적비 산정)

  • Lee, Hwan-Hee;Kim, I-Jung;Jung, Jin-Young;Kim, Jee-Hyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.700-704
    • /
    • 2008
  • Nitrite and free ammonia have been known as substrate inhibitors in anaerobic ammonium oxidation. To reduce inhibitory effect of these substrates, the NH$_3$-N/NO$_2$-N ratio in the influent could be properly controlled in anaerobic ammonium oxidation process. Five kinds of NH$_3$-N/NO$_2$-N ratio were assayed in batch to find optimum NH$_3$-N/NO$_2$-N ratio, curtailing substrate inhibition. As the results of batch test, the highest T-N removal efficiency of 88% was obtained at 1.00 : 1.30 of NH$_3$-N/NO$_2$-N ratio. In addition, rate constants for ammonium and nitrite in zero-order kinetics were found to be the highest values as 7.66 mg/L$\cdot$hr and 11.89 mg/L$\cdot$hr at 1.00 : 1.30 ratio, respectively. However, as for the specific anammox activity, the ratio of NH$_3$-N/NO$_2$-N ratio was recommended as 1 : 1.15 which can maintain the highest SAA during continuous operation and preclude the accumulation of nitrite in the reactor.

A Study for Kinetics and Oxidation Reaction of Substituted Benzyl Alcohols Using Cr(VI)-6-Methylquinoline (Cr(VI)-6-Methylquinoline을 이용한 치환 벤질 알코올류의 산화반응과 속도론에 관한 연구)

  • Park, Young Cho;Kim, Young Sik
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.372-376
    • /
    • 2015
  • 6-MQCC (Cr(VI)-6-methylquinoline) complex was synthesized by the reaction of 6-methylquinoline with chromium(VI) trioxide in 6 M HCl. The structure was characterized using IR (Infrared Spectroscopy) and ICP (Inductively Coupled Plasma) analysis. The oxidation of benzyl alcohol using 6-MQCC in various solvents showed that the reactivity increased with the increase of the dielectric constant, in descending order of DMF > acetone > chloroform > cyclohexene. In the presence of DMF solvent with acidic catalyst such as sulfuric acid ($H_2SO_4$), 6-MQCC oxidized benzyl alcohol (H) and its derivatives ($p-OCH_3$, $m-CH_3$, $m-OCH_3$, m-Cl, $m-NO_2$) were effectively oxidized. Electron-donating substituents accelerated the reaction rate, whereas electron acceptor groups retarded the reaction rate. The Hammett reaction constant (${\rho}$) was -0.69 (308 K). The observed experimental data was used to rationalize the fact that the hydride ion transfer occurred at the rate-determining step.

Kinetics of the Oxidation of Substituted Benzyl Alcohols with 4-(Dimethylamino)pyridinium Dichromate (4-(Dimethylamino)pyridinium Dichromate를 이용한 치환 벤질 알코올류의 산화반응 속도)

  • Choi, Sun do;Park, Young Cho
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.153-157
    • /
    • 2005
  • 4-(Dimethylamino)pyridinium dichromate was synthesized by the reaction of 4-(dimethylamino)pyridine with chromium(VI)trioxide in $H_2O$, and characterized by IR, EA and ICP. The oxidation of benzyl alcohol using 4-(dimethylamino)pyridinium dichromate in various solvents showed that the reactivity increased with the increase of the dielectric constant, in the order: cyclohexen < chloroform < acetone < N,N-dimethylformamide. In the presence of hydrochloric acid(HCl), 4-(dimethylamino)pyridinium dichromate oxidized benzyl alcohol and its derivatives ($p-CH_3$, H, m-Br, $m-NO_2$) smoothly in N,N-dimethylformamide. Electron-donating substituents accelerated the reaction, whereas electron-withdrawing groups retarded the reaction. The Hammett reaction constant($\rho$) was -0.70 at 303K. The observed experimental data have been rationalized as follows: the proton transfer occurs after the prior formation of a chromate ester in the rate-determining step.

Kinetic Studies on the Oxidation Reaction of Malonic Acid by Ceric Ion (세륨(Ⅳ)에 의한 말론산의 산화반응에 관한 반응속도론적 연구)

  • Kim, Wang Gi
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.10
    • /
    • pp.705-709
    • /
    • 1994
  • The kinetics of the oxidation reaction of malonic acid by ceric ion in 1 M sulfuric acid solution at $20^{\circ}C$ have been investigated by spectrophotometric method. The reaction rate at a large excess of malonic acid was found to be pseudo-first order. The observed pseudo-first order rate constants, $k_{obs}$, are dependent on the concentration of malonic acid, [MA], of which relationship has been found to be $k_{obs}$ = (0.592[MA])/(1+14.5[MA]$^2$). A mechanism for the reaction has been suggested on the basis of the above rate equation. The rate determining step may be the electron transfer reaction between enolate type malonate anion, which is formed by the acid dissociation reaction of malonic acid, and Ce(IV). The rate depression in the range of high concentration of MA has been explained by the formation of 1 : 2 chelate between Ce(IV) and malonate. According to the mechanism, the pH dependence of the rate, which was studied by Sengupta et al., has also been explained.

  • PDF

Degradation of Rhodamine B in Water using Solid Polymer Electrolyte (SPE) in the Electrolysis Process (고체 고분자 전해질(SPE)을 이용한 전기분해 공정에서 Rhodamine B 분해)

  • Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.2
    • /
    • pp.137-146
    • /
    • 2014
  • Objectives: Feasibility of electrochemical oxidation of the aqueous non-biodegradable wastewater such as cationic dye Rhodamine B (RhB) has been investigated in an electrochemical reactor with solid polymer electrolyte (SPE). Methods: Nafion 117 cationic exchange membrane as SPE has been used. Anode/Nafion/cathode sandwiches were constructed by sandwiching Nafion between two dimensionally stable anodes (JP202 electrode). Experiments were conducted to examine the effects of applied current (0.5~2.0 A), supporting electrolyte type (0.2 N NaCl, $Na_2SO_4$, and 1.0 g/L NaCl), initial RhB concentration (2.5~30.0 mg/L) on RhB and COD degradation and $UV_{254}$ absorbance. Results: Experimental results showed that an increase of applied current in electrolysis reaction with solid polymer electrolyte has resulted in the increase of RhB and $UV_{254}$ degradation. Performance for RhB degradation by electrolyte type was best with NaCl 0.2 N followed by SPE, and $Na_2SO_4$. However, the decrease of $UV_{254}$ absorbance of RhB was different from RhB degradation: SPE > NaCl 0.2 N > $Na_2SO_4$. RhB and $UV_{254}$ absorbance decreased linearly with time regardless of the initial concentration. The initial RhB and COD degradation in electrolysis reaction using SPE showed a pseudo-first order kinetics and rate constants were 0.0617 ($R^2=0.9843$) and 0.0216 ($R^2=0.9776$), respectively. Conclusions: Degradation of RhB in the electrochemical reactor with SPE can be achieved applying electrochemical oxidation. Supporting electrolyte has no positive effect on the final $UV_{254}$ absorbance and COD degradation. Mineralization of COD may take a relatively longer time than that of the RhB degradation.

Theory & Design of Electrocatalyst for Polymer Electrolyte Membrane Fuel Cell (고분자 연료전지용 전기촉매의 이론과 설계)

  • Yoo, Sung-Jong;Jeon, Tae-Yeol;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.11-25
    • /
    • 2009
  • Fuel cells are expected to be one of the major clean new energy sources in the near future. However, the slow kinetics of electrocatalytic hydrogen oxidation reaction (HOR) and oxygen reduction reaction (ORR), and the high loading of Pt for the anode and cathode material are the urgent issues to be addressed since they determine the efficiency and the cost of this energy source. In this review paper, a new approach was developed for designing electrocatalysts for the HOR and ORR in fuel cells. It was found that the electronic properties of Pt could be fine-tuned by the electronic and geometric effects introduced by the substrate alloy metal and the lateral effects of the neighboring metal atoms. The role of substrate was found reflected in a volcano plot for the HOR and ORR as a function of their calculated d-band centers. This paper demonstrated a viable way to designing the electrocatalysts which could successfully alleviate two issue facing the commercializing of the fuel cell-the cost of electrocatalysts and their efficiency.

The Partial Oxidation of Methane by Nitrous Oxide over Silica-Supported 12-Molybdophosphoric Acid (실리카 담지 12-몰리브도인산 촉매상에서의 아산화질소에 의한 메탄의 부분산화반응)

  • Hong, Seong-Soo;Woo, Hee-Chul;Ju, Chang-Sik;Lee, Gun-Dae;Moffat, J.B.
    • Applied Chemistry for Engineering
    • /
    • v.5 no.1
    • /
    • pp.139-148
    • /
    • 1994
  • The partial oxidation of methane with nitrous oxide on silica-supported metal-oxygen cluster compounds, known as heteropoly acids, has been studied. The effects of several variables such as reaction temperature, partial pressure of reactants, residence time, loading of the catalysts, and pretreatment temperature, on the conversion and product distribution were observed. The kinetics also has been studied. The conversion and yield of formaledehyde show maximum values at a loading of 20 wt%. The apparent reaction order of methane conversion is ca. 1.0 with respect to $CH_4$ and ca. 0.4 with respect to $N_2O$. In addition, the apparent activation energy is 30.78 kcal/mole. The addition of small quantities methane whereas water introduced to the reactant decreased the activity of catalyst under present study.

  • PDF