• 제목/요약/키워드: Oxidation efficiency

검색결과 952건 처리시간 0.032초

Effect of 3,3',4',5-Tetrachlorosalicylanilide on Reduction of Excess Sludge and Nitrogen Removal in Biological Wastewater Treatment Process

  • Rho, Sang-Chul;Nam, Gil-Nam;Shin, Jee-Young;Jahng, Deok-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권7호
    • /
    • pp.1183-1190
    • /
    • 2007
  • A metabolic uncoupler, 3,3',4',5-tetrachlorosalicylanilide (TCS), was used to reduce excess sludge production in biological wastewater treatment processes. Batch experiments confirmed that 0.4 mg/l of TCS reduced the aerobic growth yield of activated sludge by over 60%. However, the growth yield remained virtually constant even at the increased concentrations of TCS when cultivations were carried out under the anoxic condition. Reduction of sludge production yield was confirmed in a laboratory-scale anoxic-oxic process operated for 6 months. However, it was found that ammonia oxidation efficiency was reduced by as much as 77% in the presence of 0.8 mg/l of TCS in the batch culture. Similar results were also obtained through batch inhibition tests with activated sludges and by bioluminescence assays using a recombinant Nitrosomonas europaea (pMJ217). Because of this inhibitory effect of TCS on nitrification, the TCS-fed continuous system failed to remove ammonia in the influent. When TCS feeding was stopped, the nitrification yield of the process was resumed. Therefore, it seems to be necessary to assess the nitrogen content of wastewater if TCS is used for reducing sludge generation.

실리콘 상온 전해 도금 박막 제조 및 전기화학적 특성 평가 (Room Temperature Preparation of Electrolytic Silicon Thin Film as an Anode in Rechargeable Lithium Battery)

  • 김은지;신헌철
    • 한국재료학회지
    • /
    • 제22권1호
    • /
    • pp.8-15
    • /
    • 2012
  • Silicon-based thin film was prepared at room temperature by an electrochemical deposition method and a feasibility study was conducted for its use as an anode material in a rechargeable lithium battery. The growth of the electrodeposits was mainly concentrated on the surface defects of the Cu substrate while that growth was trivial on the defect-free surface region. Intentional formation of random defects on the substrate by chemical etching led to uniform formation of deposits throughout the surface. The morphology of the electrodeposits reflected first the roughened surface of the substrate, but it became flattened as the deposition time increased, due primarily to the concentration of reduction current on the convex region of the deposits. The electrodeposits proved to be amorphous and to contain chlorine and carbon, together with silicon, indicating that the electrolyte is captured in the deposits during the fabrication process. The silicon in the deposits readily reacted with lithium, but thick deposits resulted in significant reaction overvoltage. The charge efficiency of oxidation (lithiation) to reduction (delithiation) was higher in the relatively thick deposit. This abnormal behavior needs to clarified in view of the thickness dependence of the internal residual stress and the relaxation tendency of the reaction-induced stress due to the porous structure of the deposits and the deposit components other than silicon.

염색폐수 색도 제거를 위한 영가철 기술 최적화 (Optimization of Zero-valent Iron Technology for Color Removal from Real Dye Wastewater)

  • 이재우;오영기;차구현;이태원;고광백
    • 한국물환경학회지
    • /
    • 제25권5호
    • /
    • pp.758-763
    • /
    • 2009
  • This study presents the optimal conditions of zero-valent iron (ZVI) pretreatment for color removal from real dye wastewater. Removal of color by ZVI was strongly subject to the acidity of the wastewater buffering the pH increased after ZVI reduction. The real dye wastewater did not contain a sufficient amount of acidity and thus it was necessary to supplement acid to the dye wastewater before treatment. In continuous operation of iron column, the empty bed contact time (EBCT) and initial pH were varied to find the optimal conditions. A non-linear regression model fitted well the experimental result predicting that the optimal EBCT and pH for 80% removal efficiency was present in the range of 57~90 and 5~5.9, respectively. Color of column effluents could be further removed in the following biological oxidation step and the biodegradability of wastewater was also enhanced after iron pretreatment.

-기술정보- 연속유입 KIDEA에서 공정변화에 따른 인제거 및 탈수 함수율 상관관계 (The evaluation of T-P removal and dewaterability under the operation change in KIDEA process)

  • 연승준;허희승
    • 상하수도학회지
    • /
    • 제22권2호
    • /
    • pp.179-182
    • /
    • 2008
  • The KIDEA process, occurred in single reactor, is operated by three consequential steps, i.e., aerobic, settling, and discharge while introducing wastewater into the bottom of reactor continuously. It could accomplish biological oxidation (BOD), nitrification, denitrification (T-N), phosphate removal (T-P), and solid separation (SS) through the operational mode mentioned. Especially, this system has removed the T-P by wasting certain amount of sludge at the end of aeration phase during 5~10 minutes and not returned the activated sludge into the reactor, that is, no RAS (Return Activated Sludge). All running mode and instrumentation were controlled by the PLC equipment automatically. In this study, therefore, we have evaluated T-P removal efficiency and moisture content (MC) performance under the different excess sludge wasting mode. T-P track study and MC with TS concentration were analyzed during aerobic and settling phase. It has revealed that there was no significant difference of released T-P concentration between the first case which waste the sludge at the end of aerobic phase (0.2mg/L) and the second case which waste the sludge at 40 min of settling phase (0.25mg/L). Also, dewatering duration and MC have decreased 1.7% when TS concentration was increased from 0.31% to 0.5% during aerobic condition. Hence, it has concluded the system performance was less influenced by the operation time change of PLC program.

급속압축장치를 이용한 노말헵탄.이소옥탄 혼합연료의 HCCI 연소특성에 대한 연구 (Experimental Study on HCCI Combustion Characteristics of n-heptane and iso-octane Fuel/air Mixture by using a Rapid Compression Machine)

  • 임옥택
    • 한국분무공학회지
    • /
    • 제16권4호
    • /
    • pp.167-175
    • /
    • 2011
  • The HCCI engines have been known with high efficiency and low pollution and can be actualized as the new internal combustion engines. However, As for(??) the ignition and combustion depend strongly on the oxidation reaction of the fuel, so it is difficult to control auto-ignition timing and combustion duration. Purpose of this paper is creating the database for development of multi-dimensional simulation and investigating the influence of different molecular structure. In this research, the effect of n-heptane mole ratio in fuel (XnH) on the ignition delay from homogeneous charge compression ignition(HCCI) has been investigated experimentally. By varying the XnH, it was possible to ascertain whether or not XnH is the main resource of ignition delay. Additionally, the information on equivalence ratio for varying XnH was obtained. The tests were performed on a RCM (Rapid Compression Machine) fueled with n-heptane and iso-octane. The results showed that decreasing XnH (100, 30, 20, 10,0), the ignition delays of low temperature reaction (tL) and high temperature reaction (tH) is longer. And the temperature of reaction increases by about 30K. n-heptane partial equivalence ratio (fnH) affect on tL.and TL. When ${\phi}$nH was increased as a certain value, tL was decreased and TL was increased.

Reaction Mechanism and Kinetics of Degradation for Refractory Organic Pollutants in Water by Ultrasonic Irradiation

  • Sohn, Jong-Ryeul;Moon, Kyung-Hwan
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2003년도 Challenges and Achievements in Environmental Health
    • /
    • pp.123-127
    • /
    • 2003
  • This experiment was performed to investigate the characteristics of sonolytic reaction as the basic data for development of the ultrasonic AOP(Advanced Oxidation Process) process from which the refractory organic compounds in aqueous solution which are not readily removed by the existing conventional wastewater treatment processes can be destructed and removed. Trichloroethylene (TCE), benzene, and 2,4-dichlorophenol(DCP) were used as the samples, and their destruction efficiency were measured in terms of experimental parameters of the initial solution concentration, initial solution pH, reaction temperature, acoustic frequencies and intensities. Results showed that the destruction efficiencies of all of the sample materials were above 80% within 120 minutes of sonolytic reaction in all reaction condition. The reaction order of these three compounds was verified as Pseudo first order. From the fore-mentioned results, it can be concluded that the refractory organic compounds could be removed by the ultrasonic irradiation with radicals, such as H$.$and OH$.$causing the high increase of pressure and temperature. Finally, it appears that the new AOP technology using ultrasonic irradiation can be applied to the treatment of refractory substances which are difficult to be decomposed by the conventional methods.

  • PDF

중금속폐수에서 구리의 전기화학적 침전처리 (Electrochemical Precipitation Treatment of Copper from an Heavymetal Wastewater)

  • 김재우;이재동;이우식;지은상
    • 한국환경보건학회지
    • /
    • 제23권3호
    • /
    • pp.1-6
    • /
    • 1997
  • This research was conducted in the laboratory to investigate an alternative of Copper(Cu) removal from an heavymetal wastewater using the electrochemical precipitation(ECP) process. The ECP unit consisted of an electrolytic cell made of Titanium plate and Steel plate representing anode and cathode. The DC power source applied to the ECP unit had electrical potential(E) of 50$\pm$ 1V, respectively. The synthetic wastewater used in the experiments contained Cu in the 10 mg/l concentration and the electrode separation were 2, 3, 4 cm and the initial pH were 3, 6, 9, 12, and electrolytic concentration were 0.005, 0.0125, 0.025, 0.0375 mole, and the real heavymetal wastewater used in the experiments. From the experiment for removal efficiency according to pH variation, the low pH area doesn't give the coagulation effect by Ti(OH)$_4$ because process interfere with the coagulation and oxidation reaction, therefore the optimum pH was 4-7. The removal rate was 97.75% after the lapse of 30 minutes when copper concentration and electrolytic concentration were respectively 10 mg/l and 0.025 mole. The removal rate was 96.41% after the lapse of 30minutes when the real heavymetal wastewater used. The optimum consumption of power showed 27KWh/m$^3$ when copper concentration, electrolyte concentration and cell potential were respectively 10 mg/l, 0.025 mole and 50$\pm$ 1 Volt.

  • PDF

SiC-Al2O3 촉매를 이용한 CF4의 마이크로파 열분해 (Microwave Thermal Decomposition of CF4 using SiC-Al2O3)

  • 최성우
    • 한국환경과학회지
    • /
    • 제22권9호
    • /
    • pp.1097-1103
    • /
    • 2013
  • Tetrafluoromethane($CF_4$) have been widely used as etching and chemical vapor deposition gases for semiconductor manufacturing processes. $CF_4$ decomposition efficiency using microwave system was carried out as a function of the microwave power, the reaction temperature, and the quantity of $Al_2O_3$ addition. High reaction temperature and addition of $Al_2O_3$ increased the $CF_4$ removal efficiencies and the $CO_2/CF_4$ ratio. When the SA30 (SiC+30wt%$Al_2O_3$) and SA50 (SiC+50wt%$Al_2O_3$) were used, complete $CF_4$ removal was achieved at $1000^{\circ}C$. The $CF_4$ was reacted with $Al_2O_3$ and by-products such as $CO_2/CF_4$ and $AlF_3$ were produced. Significant amount of by-product such as $AlF_3$ was identified by X-ray powder diffraction analysis. It also showed that the ${\gamma}-Al_2O_3$ was transformed to ${\alpha}-Al_2O_3$ after microwave thermal reaction.

Contribution of Carbon Dot Nanoparticles in Electrocatalysis: Development in Energy Conversion Process

  • Jana, Jayasmita;Ngo, Yen-Linh Thi;Chung, Jin Suk;Hur, Seung Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권3호
    • /
    • pp.220-237
    • /
    • 2020
  • Modern electrochemical energy devices involve generation and reduction of fuel gases through electrochemical reactions of water splitting, alcohol oxidation, oxygen reduction, etc. Initially, these processes were executed in the presence of noble metal-based catalyst that showed low overpotential and high current density. However, its high cost, unavailability, corrosion and related toxicity limited its application. The search for alternative with high stability, durability, and efficiency led scientists towards carbon nanoparticles supported catalysts which has high surface area, good electrical conductivity, tunable morphology, low cost, ease of synthesis and stability. Carbon nanoparticles are classified into two groups based on morphology, one and zero dimensional particles. Carbon nanoparticles at zero dimension, denoted as carbon dots, are less used carbon support compared to other forms. However, recently carbon dots with improved electronic properties have become popular as catalyst as well as catalyst support. This review focused on the recent advances in electrocatalytic activities of carbon dots. The mechanisms of common electrocatalytic reactions and the role of the catalysts are also discussed. The review also proposed future developments and other research directions to overcome current limitations.

콜타르 핏치를 이용하여 제조된 탄소/탄소 복합재의 관성제동 마찰특성 (The Inertia Friction properties of the Carbon/Carbon Composites Manufactured Using a Coal-tar Pitch)

  • 이진용;서동수;임연수;이승구;박종규
    • 한국세라믹학회지
    • /
    • 제35권7호
    • /
    • pp.740-748
    • /
    • 1998
  • The inertia friction properties of C/C composites manufactured by the processes of pressure and at-mospheric carbonizaton with a commerciallized and two kinds of modified coal-tar pitch as a matrix pre-cursor were investigated. The modifications of a pitch such as the introduction of mesophase and the ad-dition of sulphur into a raw pitch were not effective for a impregnation efficiency conducted in a vacuum and at the same time in a pressure of 5kg/cm2 due to the increase of the pitch viscosity. There was not a difference in the densification increment between the pitch modifications however it was revealed that a pressure carbonization was more advantageous than an atmospheric in the densification and the formation of anisotropic carbon matrix. The friction and wear propertis of C/C having higher degree of matrix cry-stallization higher density and hardness of friction surface showed superiority. As the braking energy was increased the friction coefficients were decreased and reached almost same level at the high kinetic energy of 99.6kJ. The wear trends at 99.6kJ were different from the behaviors of friction ceofficient under the same energy in which an oxidation wear is being considered along with a mechnical wear although the wear rates were almost similar to the friction coefficient at the low energy.

  • PDF