염색폐수 색도 제거를 위한 영가철 기술 최적화

Optimization of Zero-valent Iron Technology for Color Removal from Real Dye Wastewater

  • 이재우 (고려대학교 환경시스템공학과) ;
  • 오영기 ((주) GS 건설기술연구소) ;
  • 차구현 (델라웨어대학교, 토목환경공학과) ;
  • 이태원 (고려대학교 정보수학과) ;
  • 고광백 (연세대학교 사회환경시스템공학부)
  • Lee, Jae Woo (Department of Environmental Engineering, Korea University) ;
  • Oh, Young Khee (GS Engineering and Construction Corporation) ;
  • Cha, Daniel K. (Department of Civil and Environmental Engineering, University of Delaware) ;
  • Lee, Taewon (Department of Information and Mathematics, Korea University) ;
  • Ko, Kwang Baik (School of Civil & Environmental Engineering, Yonsei University)
  • 투고 : 2009.06.29
  • 심사 : 2009.08.18
  • 발행 : 2009.09.30

초록

This study presents the optimal conditions of zero-valent iron (ZVI) pretreatment for color removal from real dye wastewater. Removal of color by ZVI was strongly subject to the acidity of the wastewater buffering the pH increased after ZVI reduction. The real dye wastewater did not contain a sufficient amount of acidity and thus it was necessary to supplement acid to the dye wastewater before treatment. In continuous operation of iron column, the empty bed contact time (EBCT) and initial pH were varied to find the optimal conditions. A non-linear regression model fitted well the experimental result predicting that the optimal EBCT and pH for 80% removal efficiency was present in the range of 57~90 and 5~5.9, respectively. Color of column effluents could be further removed in the following biological oxidation step and the biodegradability of wastewater was also enhanced after iron pretreatment.

키워드

과제정보

연구 과제 주관 기관 : GS 건설

참고문헌

  1. 김미경, 서상준, 신응배(2006). 염색폐수의 생물학적 색도제거 연구. 수질보전 한국물환경학회지, 22(2), pp. 333-341
  2. 하준수, 박후원, 김성원, 윤예진, 유성환, 이상협(2008). 염색폐수 처리공정에서 COD fraction의 변화와 색도처리. 수질보전 한국물환경학회지, 24(5), pp. 537-542
  3. 환경부(2007). 별도배출허용기준 지정고시 현황
  4. APHA, AWWA and WEF (2005). Standard Methods for the Examination of Water and Wastewater, 21st edn., Washington D. C
  5. Arslan, I. and Balcioglu, I. A. (1999). Degration of commercial ractive dyestuffs by heterogenous and homogenous advanced oxidation process: a comparative study. Dyes and Pigments, 43, pp. 95-108 https://doi.org/10.1016/S0143-7208(99)00048-0
  6. Cao, J., Wei, L., Huang, Q., Wang, L., and Han, S. (1999). Reducing degradation of azo dye by zero-valent iron in aqueous solution. Chemosphere, 38, pp. 565-571 https://doi.org/10.1016/S0045-6535(98)00201-X
  7. Chun, H. and Yizhong, W. (1999). Decolorization and biodegradability of photocatalytic treated azo dyes and wool textile wastewater. Chemosphere, 39, pp. 2107-2115 https://doi.org/10.1016/S0045-6535(99)00118-6
  8. Chung, K. T. and Stevens, S. E. (1993). Degradation of azo dyes by environmental microorganisms and helminthes. Env. Tox. Chem., 12, pp. 2121-2132 https://doi.org/10.1002/etc.5620121120
  9. Devlin, J. F., Klausen, J., and Schwarzenbach, R. P. (1998). Kinetics of nitroaromatic reduction on granular iron in recirculating batch experiments. Environ. Sci. Technol., 32, pp. 1941-1947 https://doi.org/10.1021/es970896g
  10. Hitz, H. R., Huber, W., and Reed, R. H. (1978). Publication sponsored by ETAD: The adsorption of dyes on activated sludge. JSDC., 94, pp. 71-76 https://doi.org/10.1111/j.1478-4408.1978.tb03396.x
  11. Lee, J. W., Cha, D. K., Oh, Y. K., Ko, K. B., and Song, J. S. (2009). Zero-valent iron pretreatment for detoxifying iodine in liquid crystal display (LCD) manufacturing wastewater. J. of Haz. Mat., 164, pp. 67-72 https://doi.org/10.1016/j.jhazmat.2008.07.147
  12. Nam, S. and Tratnyek, P. G. (2000). Reduction of azo dyes with zero-valent iron. Wat. Res., 34, pp. 1837-1845 https://doi.org/10.1016/S0043-1354(99)00331-0
  13. Oh, S. Y., Lee, J. W., Cha, D. K., and Chiu, P. C. (2006). Reduction of acrolein by elemental iron: kinectics, pH effect, and detoxification. Environ. Sci. Technol., 40, pp. 2765-2770 https://doi.org/10.1021/es052246f
  14. Perey, J. R., Chiu, P. C., Huang, C. P., and Cha, D. K. (2002). Zero-valent iron pretreatment for enhancing the biodegradability of azo dyes. Water Environ. Res., 74, pp. 221-225 https://doi.org/10.2175/106143002X139938
  15. Ramakrishna, K. R. and Viraraghavan, T. (1997). Dye removal using low cost adsorbents. Wat. Sci. Technol., 36, pp. 189-196 https://doi.org/10.1016/S0273-1223(97)00387-9
  16. Razo-Flores, E., Luijten, M., Donlon, B., Lettinga, G., and Field, J. (1997). Biodegradation of selected azo dyes under methanogenic conditions. Wat. Sci. Technol., 36, pp. 65-72 https://doi.org/10.1016/S0273-1223(97)00508-8
  17. Shaul, G. M., Holdsworth, T. J., Dempsey, C. R., and Dostal, K. A. (1991). Fate of water and soil using zero-valent iron. J. Environ. Qual., 27, pp. 1240-1245 https://doi.org/10.2134/jeq1998.00472425002700050032x
  18. Tratnyek, P. G. and Agrawal, A. (1996). Reduction of nitro aromatic compounds by zero-valent iron metal. Environ. Sci. Technol., 30, pp. 153-160 https://doi.org/10.1021/es950211h
  19. Weber, E. J. (1996). Iron-mediated reductive transformations: investigation of reaction mechanism. Environ. Sci. Technol., 30, pp. 716-719 https://doi.org/10.1021/es9505210