• Title/Summary/Keyword: Oxidation efficiency

Search Result 952, Processing Time 0.041 seconds

Removal characteristics of NOMs in a slow sand filter at different media depth and operation time (완속여과공정에서 운전시간 및 여층깊이에 따른 자연유기물질(NOM) 제거 특성)

  • Park, Noh-Back;Park, Sang-Min;Seo, Tae-Kyeong;Jun, Hang-Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.467-473
    • /
    • 2008
  • Natural organic matter (NOM) removal by physico-chemical adsorption and biological oxidation was investigated in five slow sand filters with different media depths. Non-purgeable dissolved organic carbon(NPDOC) and $UV_{254}$ absorbance were measured to evaluate the characteristics of NOM removal at different filter depths. Removal efficiency of NOM was in the range of 10-40% throughout the operation time. At start-up of the filters packed with clean sand media, NOM was probably removed by physico-chemical adsorption on the surface of sand through the overall layer of filter bed. However, when Schumutzdecke layer was built up after 30 days operation, the major portion of NPDOC was removed by biological oxidation and/or bio-sorption in lower depth above 50 mm. NOM removal rate in the upper 50 mm filter bed was $0.82hr^{-1}$. It was about 20 times of the rate($0.04hr^{-1}$) in the deeper filter bed. Small portion of NPDOC could be removed in the deeper filter bed by both bio-sorption and biodegradation. SEM analysis and VSS measurement clearly showed the growth of biofilm in the deeper filter bed below 500 mm, which possibly played an important role in the NOM removal by biological activity besides the physco-chemical adsorption mechanism

Effects of Electron Beam Irradiation on Pathogen Inactivation, Quality, and Functional Properties of Shell Egg during Ambient Storage

  • Kim, Hyun-Joo;Yun, Hye-Jeong;Jung, Samooel;Jung, Yeon-Kuk;Kim, Kee-Hyuk;Lee, Ju-Woon;Jo, Cheor-Un
    • Food Science of Animal Resources
    • /
    • v.30 no.4
    • /
    • pp.603-608
    • /
    • 2010
  • This study investigated the effects of electron beam irradiation on pathogens, quality, and functional properties of shell eggs during storage. A 1st grade 1-d-old egg was subjected to electron beam irradiation at 0, 1, 2, and 3 kGy, after which the number of total aerobic bacteria, reduction of inoculated Escherichia coli and Salmonella Typhimurium, egg quality, and functional properties were measured. Electron beam irradiation at 2 kGy reduced the number of E. coli and S. Typhimurium cells to a level below the detection limit (<$10^2$ CFU/g) after 7 and 14 d of storage. Egg freshness as measured by albumen height and the number of Haugh units was significantly reduced by 1-kGy irradiation. The viscosity of irradiated egg white was also significantly decreased by increased irradiation, whereas its foaming ability was increased. Electron beam irradiation also increased lipid oxidation in egg yolks. These results suggest that electron beam irradiation reduces the freshness of shell eggs while increasing the oxidation of egg yolk and improving important functional properties such as foaming capacity. Electron beam irradiation can also be applied to the egg breaking process since the irradiation reduces the viscosity of egg white, which can allow egg whites and yolks to be separated with greater efficiency.

Bleeding Efficiency and Meat Oxidative Stability and Microbiological Quality of New Zealand White Rabbits Subjected to Halal Slaughter without Stunning and Gas Stun-killing

  • Nakyinsige, K.;Fatimah, A.B.;Aghwan, Z.A.;Zulkifli, I.;Goh, Y.M.;Sazili, A.Q.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.406-413
    • /
    • 2014
  • A study was conducted to compare the effect of halal slaughter without stunning and gas stun killing followed by bleeding on residual blood content and storage stability of rabbit meat. Eighty male New Zealand white rabbits were divided into two groups of 40 animals each and subjected to either halal slaughter without stunning (HS) or gas stun-kill (GK). The volume of blood lost during exsanguination was measured. Residual blood was further quantified by determination of haemoglobin content in Longissimus lumborum (LL) muscle. Storage stability of the meat was evaluated by microbiological analysis and measuring lipid oxidation in terms of thiobarbituric acid reactive substances (TBARS). HS resulted in significantly higher blood loss than GK. HS had significantly lower residual haemoglobin in LL muscle compared to GK. Slaughter method had no effect on rabbit meat lipid oxidation at 0, 1, and 3 d postmortem. However, at 5 and 8 days of storage at $4^{\circ}C$, significant differences (p<0.05) were found, with meat from the GK group exhibiting significantly higher levels of MDA than that from HS. At day 3, greater growth of Pseudomonas aeroginosa and E. coli were observed in the GK group (p<0.05) with B. thermosphacta and total aerobic counts remained unaffected by slaughter method. At days 5 and 7 postmortem, bacterial counts for all tested microbes were affected by slaughter method, with GK exhibiting significantly higher growth than HS. It can be concluded that slaughter method can affect keeping quality of rabbit meat, and HS may be a favourable option compared to GK due to high bleed out.

Strain-induced enhancement of thermal stability of Ag metallization with Ni/Ag multi-layer structure

  • Son, Jun-Ho;Song, Yang-Hui;Kim, Beom-Jun;Lee, Jong-Ram
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.157-157
    • /
    • 2010
  • Vertical-structure light-emitting diodes (V-LEDs) by laser lift-off (LLO) have been exploited for high-efficiency GaN-based LEDs of solid-state lightings. In V-LEDs, emitted light from active regions is reflected-up from reflective ohmic contacts on p-GaN. Therefore, silver (Ag) is very suitable for reflective contacts due to its high reflectance (>95%) and surface plasmon coupling to visible light emissions. In addition, low contact resistivity has been obtained from Ag-based ohmic contacts annealed in oxygen ambient. However, annealing in oxygen ambient causes Ag to be oxidized and/or agglomerated, leading to degradation in both electrical and optical properties. Therefore, preventing Ag from oxidation and/or agglomeration is a key aspect for high-performance V-LEDs. In this work, we demonstrate the enhanced thermal stability of Ag-based Ohmic contact to p-GaN by reducing the thermal compressive stress. The thermal compressive stress due to the large difference in CTE between GaN ($5.6{\times}10^{-6}/^{\circ}C$) and Ag ($18.9{\times}10^{-6}/^{\circ}C$) accelerate the diffusion of Ag atoms, leading to Ag agglomeration. Therefore, by increasing the additional residual tensile stress in Ag film, the thermal compressive stress could be reduced, resulting in the enhancement of Ag agglomeration resistance. We employ the thin Ni layer in Ag film to form Ni/Ag mutli-layer structure, because the lattice constant of NiO ($4.176\;{\AA}$ is larger than that of Ag ($4.086\;{\AA}$). High-resolution symmetric and asymmetric X-ray diffraction was used to measure the in-plane strain of Ag films. Due to the expansion of lattice constant by oxidation of Ni into NiO layer, Ag layer in Ni/Ag multi-layer structure was tensilely strained after annealing. Based on experimental results, it could be concluded that the reduction of thermal compressive stress by additional tensile stress in Ag film plays a critical role to enhance the thermal stability of Ag-based Ohmic contact to p-GaN.

  • PDF

Application of TAO System and RDF for Treatment of Cattle Manure (우분뇨의 고형연료화와 고온호기산화 공정 적용 가능성에 관한 연구)

  • Kim, Soo-Ryang;Hong, In-Gi;Kim, Ha-Je;Jeon, Sang-Jun;Lee, Jeong-Soo;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.19 no.2
    • /
    • pp.177-182
    • /
    • 2013
  • We studied the possibility to produce solid fuel using cattle manure and to apply TAO (Thermophilic Aerobic Oxidation) process of solid-liquid separation fraction. The physiochemical compositions of cattle manure solid fuel chip were analyzed as water 0.12%, low calorific value 3,510 kcal/kg, ashes 11.9%, chlorine 0.82%, sulfur dust 0.5%, mercury non-detection, cadmium 1.0 mg/kg, lead 2 mg/kg, arsenic non-detection. In treating cattle manure with TAO reactor the internal temperature of the reactor was increasing higher and $50^{\circ}C$ and over was maintained after 20 hours on. The physiochemical compositions of liquids increased from pH 7.3 to pH 9.18 and EC decreased from 4.6 to 3.48 mS/cm in treating process of cattle manure with TAO reactor. COD and SCOD decreased from 16,800 to 10,400 mg/L, from 4,600 to 2,040 mg/L respectively, which showed about 38% and 56% of remove efficiency respectively.

Removal of Nitrate by modified Nanoscale Zero-Valent Iron (개질된 Nanoscale Zero-Valent Iron을 이용한 질산성질소 처리)

  • Kim, Hong-Seok;Ahn, Jun-Young;Hwang, Kyung-Yup;Park, Joo-Yang;Hwang, Inseong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.471-479
    • /
    • 2009
  • A Nanoscale Zero-Valent Iron(NZVI) was modified to build a reactor system to treat nitrate. Shell layer of the NZVI was modified by slow exposure of the iron surface to air flow, which produced NZVI particles that are resistant to aerial oxidation. A XANES (X-ray Absorption Near-Edge Structure) analysis revealed that the shell consists of magnetite ($Fe_3O_4$) dominantly. The shell-modified NZVI(0.5 g NZVI/ 120 mL) was able to degrade more than 95% of 30 mg/L of nitrate within $30 hr^{-1}$ ( pseudo first-order rate constant($k_{SA}$) normalzed to NZVI surface area ($17.96m^2/g$) : $0.0050L{\cdot}m^{-2}{\cdot}hr^{-1}$). Ammonia occupied about 90% of degradation products of nitrate. Nitrate degradation efficiencies increased with the increase of NZVI dose generally. Initial pH values of the reactor systems at 4, 7, and 10 did not affect nitrate removal rate and final pH values of all experiments were near 12. Nitrate removal experiments by using the shell-modified NZVI immobilized on a cellulose acetate (CA) membrane were also conducted. The nitrate removal efficiency of the CA membrane supported NZVI ($k_{SA}=0.0036L{\cdot}m^{-2}{\cdot}hr^{-1}$) was less than that of the NZVI slurries($k_{SA}=0.0050L{\cdot}m^{-2}{\cdot}hr^{-1}$), which is probably due to less surface area available for reduction and to kinetic retardation by nitrate transport through the CA membrane. The detachment of the NZVI from the CA membrane was minimal and impregnation of up to 1 g of NZVI onto 1 g of the CA membrane was found feasible.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Photocatalyst and Alumina Microfiltration: Effect of Organic Matters at Nitrogen Back-flushing (광촉매 및 알루미나 정밀여과 혼성공정에 의한 고탁도 원수의 고도정수처리: 질소 역세척시 유기물의 영향)

  • Park, Jin Yong;Sim, Sung Bo
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.441-449
    • /
    • 2012
  • Effect of humic acid (HA) with periodic nitrogen back-flushing was investigated in hybrid process of alumina microfiltration and photocatalyst for drinking water treatment. It was compared and investigated with the previous results of microfiltration water back-flushing or ultrafiltration nitrogen back-flushing in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). As results, the trends of membrane fouling were different depending on nitrogen or water back-flushing, and depending on ultrafiltration or microfiltration made with the same material. Also, the nitrogen back-flushing using microfiltration was more effective membrane fouling inhibition than ultrafiltration, and the nitrogen back-flushing was more effective than water back-flushing using the same microfiltration membrane. Turbidity treatment efficiencies were almost constant independent of HA concentration, but HA treatment efficiency was the maximum at HA 10 mg/L. From this results, it was shown that the treated water HA quality increased as increasing HA concentration, but HA could be removed the most effectively by photocatalyst beads adsorption and photo-oxidation at HA 10 mg/L.

Antioxidantive Effectiveness of Trichosanthes kirilowii Maximowicz Extracts (하늘타리(Trichosantes kirilowii Maximowicz)추출물의 항산화 효과)

  • Zhoh, Choon Koo;Uhm, Tae Yong;Kim, Joo Chan
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.625-629
    • /
    • 2007
  • Recently, there is a growing interest about unsaturated lecithin having excellent characteristics of skin affinity and absorbency. Accordingly, this study intended to develop a natural sulfuration material in order to enhance the stability of oxidation of unsaturated lecithin and substitute existing sulfuration materials which indicate variability and toxicity. As sulfuration components, plenol acid family, 3,5-dihydroxybenzoic acid, and flavanone were analyzed. Total polyphenol content was higher in the root extracts (133.85 mg/g) than in the fruit extracts (53.5 mg/g). Above 100 ppm polyphenol content, the free radical removal efficiency and lipid oxidation prevention of the root extracts were 20.1 and 19.2% superior compared with BHT respectively. Also, the extracts indicated high survival rate of more than 95% below 1250 ppm, showing the stability. For the stability of liposome made from an unsaturated lecithin, the root extracts were superior to the fruit extracts. Especially, 15.1 and 13.9% of sulfuration effect and zeta potential were improved with 9.3% reduced particle size compared with BHT as the control group, respectively.

Change in Engine Exhaust Characteristics Due to Automotive Waste Heat Recovery (엔진 배기 폐열회수로 인한 배기 특성 변화)

  • Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4723-4728
    • /
    • 2014
  • In this study, a thermoelectric module (TEM) and a diesel engine were modeled using 1-D commercial software AMESim, and the performance of the TEM was evaluated when the engine was operated under the NEDC driving cycle. The goal of TEM modeling was to investigate not only the waste heat recovery (WHR) rate and energy converting efficiency, but also the heat transfer rate by taking the materials characteristics into account. In addition, a diesel oxidation catalyst (DOC) was designed, and it was found that the waste heat recovery with TEM affects the activation of DOC and alters engine exhaust composition. The simulation indicated that the WHR using TEM is beneficial for decreasing the fuel consumption of vehicles, but the reduction in the exhaust temperature affects the activation of DOC, resulting in an approximately 14% increase in CO and HC emissions. Therefore, the effect of waste heat recovery on the automotive emission characteristics must be considered in the development of automotive engine WHR systems.

Advanced Treatment of Sewage Using Waste Plastic Vessel Media (폐플라스틱용기 미디어를 활용한 오수고도처리)

  • Kim, Jae-Yong;Um, Myeong-Heon;An, Dae-Hyun;Shim, Myeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.58-61
    • /
    • 2006
  • The object of this study was to develop an advanced method for fluid flow and oxygen transmission and increase adhesive property of microorganism to waste plastic vessel that was made of microorganism media. Through lab scale experiments, we found the optimum packed media volume rate and method, and when the optimum condition was applied to pilot plant, we confirmed possibility of advanced treatment. The sewage that was used in the test was the sewage disposal facility established in C and K elementary schools, which utilized waste plastic media oxidation engineering method. Analysis showed that removal efficiency of organic matter, SS, T-N and T-P was very high, that the sewage disposal facility maintained stability of treatment when changeable load of raw sewage flowed in.