• 제목/요약/키워드: Oxidation and coatings

검색결과 187건 처리시간 0.044초

강 구조물에 대한 폴리아닐린 함유도료의 방청특성 (Anti-Corrosion Characteristics of Steel Structures with Polyaniline Anti-Corrosive Coatings)

  • 송민경;공승대;오은하;윤철훈;김윤신;임호섭
    • 한국환경보건학회지
    • /
    • 제36권3호
    • /
    • pp.236-246
    • /
    • 2010
  • In preparative anti-corrosive coating experiments, polyaniline was obtained by reacting an oxidizing agent with the monomer aniline. Further, the primer coating was prepared using a variety of widely-used materials such as urethane resin. For the top coating, epoxy resin and acrylic urethane resin were used. Characteristics of the coatings were assessed according to KS and ASTM specifications, and the structure of the polyaniline was characterized using FT-IR and TGA. For analysis of anti-corrosive properties in salt-spray experiments, measurements of the oxidation state of iron and surface atomic analysis were conducted using XPS and SEM-EDX. Unlike general anti-corrosive coatings which exhibit anti-corrosive effects only as a primer coating, the anti-corrosive coatings using polyaniline as the anti-corrosive pigment showed a marked synergistic effect with the top coatings. In other words, the top coatings not only produce a fine view effect, but also increase, through interaction with the primer coatings, the resistance to diffusion of corrosive factors from the external environment. It was also found that, unlike the heavy metal oxide-forming layer of the passive barrier alone, the polyaniline anti-corrosive pigment oxidized iron at the interface with the iron substrate to form a passive barrier in the oxidic layer, and itself formed a potential barrier layer with anti-corrosive factors from the external environment. Although the passive layer was damaged, the damaged area did not become completely oxidized iron; on the contrary, it showed a tendency to reduction. This can be interpreted such that a passive layer is formed again on the damaged area, and that at the same time there is a tendency to self-healing.

Microstructure and Bonding Strength of Tungsten Coating Deposited on Copper by Plasma Spraying

  • Song, Shu-Xiang;Zhou, Zhang-Jian;Du, Juan;Zhong, Zhi-Hong;Ge, Chang-Chun
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.511-512
    • /
    • 2006
  • Tungsten coatings with different interlayers onto the oxygen-free copper substrates were fabricated by atmosphere plasma spraying. The effects of different interlayers of NiCrAl, NiAl and W/Cu on bonding strength were studied. SEM, EDS and XRD were used to investigate the photographs and compositions of these coatings. The tungsten coatings with different initial particle sizes resulted in different microstructures. Oxidation was not detected in the tungsten coating, but in the interlayer, it was found by both XRD and EDS. The tungsten coating deposited directly onto the copper substrate presented higher bonding strength than those with different interlayers.

  • PDF

High Temperature Corrosion of Ni-17%W Coatings in Ar-0.2%SO2 Atmosphere

  • Lee, Dong-Bok;Kwon, Sik-Chol
    • 한국표면공학회지
    • /
    • 제43권1호
    • /
    • pp.31-35
    • /
    • 2010
  • Coatings of Ni-17 at.%W were electroplated on a steel substrate, and their corrosion behavior was investigated between 600 and $800^{\circ}C$ in an Ar-0.2%$SO_2$ atmosphere. They delayed the corrosion of the steel substrate. They were corroded into an outer NiO-rich layer, and an inner ($WO_3+NiO+NiWO_4$)-mixed oxide layer. Below these oxide layers, a sulfide layer gradually formed.

STS316 용사코팅의 마모거동에 미치는 작용하중 및 미끄럼속도의 영향 (Effect of Applied Load and Sliding Speed on Wear Behavior of Thermally Sprayed STS316 Coating)

  • 이재홍;김영식
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.74-79
    • /
    • 2014
  • This article aims at investigating the effect of applied load and sliding speed on wear behavior of thermally spraryed STS316 coating. STS316 coatings were fabricated by flame spray process according to optimal parameters on steel substrates. Dry sliding wear tests were performed on STS316 coating using four different applied load as 10, 15, 20 and 25 N and four different sliding speed as 15, 30, 45 and 60 rpm. Wear behavior on worn surface was investigated using scanning electron microscope(SEM) and energy disperive X-ray spectroscopy(EDS). The dominant wear mechanism of STS316 coating under low applied load and sliding speed was oxidation on worn surface. However, under high applied load and sliding speed the principal wear mechanism was abrasion on oxidation film and damage of oxidation film.

TiAl합금의 Al 피복시 Al확산 피복층의 내고온산화성 (Oxidation Resistance of Al Diffusion Coating Layer on TiAl)

  • 이철형;최진일
    • 열처리공학회지
    • /
    • 제10권2호
    • /
    • pp.150-156
    • /
    • 1997
  • The effect of variation of pack activators, compositions, temperature and time on the thickness and structure of aluminide coatings formed on the TiAl alloy was studied in one-step packs and two-step packs containing aluminum for the purpose of improvement of oxidation resistance. The thickness of coating layer was increased with increasing $NH_4Cl$ content up to 3wt% and then it was saturated. Oxidation resistance of coating layers carried out at one step pack was superior to that of ones through of two step pack. The improvement of high temperature oxidation resistance was due to the formation of a protective $Al_2O_3$ surface layers and coating the alloys with $TiAl_3$ phase.

  • PDF

The Oxidation of Polymethylsiloxane/MoSi$_2$/SiC/Si-Derived Ceramic Composite Coatings

  • Moon, Jae-Jin;Lee, Dong-Bok;Kim, Deug-Joong
    • 한국표면공학회지
    • /
    • 제36권1호
    • /
    • pp.85-88
    • /
    • 2003
  • By utilization of preceramic polymer of polymethylsiloxane (PMS), a $MoSi_2$SiOC/SiC ceramic composite was fabricated. The prepared composite displayed superior high temperature oxidation resistance by forming $SiO_2$ on the surface. The thin $SiO_2$ layer had some surface cracks, but they had not adversely deteriorated the oxidation resistance. The composite fabrication method employed in this study can be applied to protect any possible substrate material from aggressive oxidative attack, if the composite were coated on the substrate material.

Sand particle-Induced deterioration of thermal barrier coatings on gas turbine blades

  • Murugan, Muthuvel;Ghoshal, Anindya;Walock, Michael J.;Barnett, Blake B.;Pepi, Marc S.;Kerner, Kevin A.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권1호
    • /
    • pp.37-52
    • /
    • 2017
  • Gas turbines operating in dusty or sandy environment polluted with micron-sized solid particles are highly prone to blade surface erosion damage in compressor stages and molten sand attack in the hot-sections of turbine stages. Commercial/Military fixed-wing aircraft engines and helicopter engines often have to operate over sandy terrains in the middle eastern countries or in volcanic zones; on the other hand gas turbines in marine applications are subjected to salt spray, while the coal-burning industrial power generation turbines are subjected to fly-ash. The presence of solid particles in the working fluid medium has an adverse effect on the durability of these engines as well as performance. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The focus of this research work is to simulate particle-surface kinetic interaction on typical turbomachinery material targets using non-linear dynamic impact analysis. The objective of this research is to understand the interfacial kinetic behaviors that can provide insights into the physics of particle interactions and to enable leap ahead technologies in material choices and to develop sand-phobic thermal barrier coatings for turbine blades. This paper outlines the research efforts at the U.S Army Research Laboratory to come up with novel turbine blade multifunctional protective coatings that are sand-phobic, sand impact wear resistant, as well as have very low thermal conductivity for improved performance of future gas turbine engines. The research scope includes development of protective coatings for both nickel-based super alloys and ceramic matrix composites.

Hafnium Carbide Protective Layer Coatings on Carbon/Carbon Composites Deposited with a Vacuum Plasma Spray Coating Method

  • 유희일;김호석;홍봉근;신의섭;문세연
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.237.2-237.2
    • /
    • 2016
  • A pure hafnium-carbide (HfC) coating layer was deposited onto carbon/carbon (C.C) composites using a vacuum plasma spray system. By adopting a SiC buffer layer, we successfully integrated C.C composites with a $100-{\mu}m-thick$ protective coating layer of HfC. Compared to the conventional chemical vapor deposition process, the HfC coating process by VPS showed increased growth rate, thickness, and hardness. The growth behavior and morphology of HfC coatings were investigated by FE-SEM, EDX, and XRD. From these results, it was shown that the addition of a SiC intermediate layer provided optimal surface conditions during the VPS procedure to enhance adhesion between C.C and HfC (without delamination). The thermal ablation test results shows that the HfC coating layer perfectly protected inner C.C layer from thermal ablation and oxidation. Consequently, we expect that this ultra-high temperature ceramic coating method, and the subsequent microstructure that it creates, can be widely applied to improve the thermal shock and oxidation resistance of materials under ultra-high temperature environments.

  • PDF

흑색 코발트 태양 선택흡수막의 열퇴화 (Thermal Degradation of Black Cobalt Solar Selective Coatings)

  • 이길동
    • 한국태양에너지학회 논문집
    • /
    • 제35권4호
    • /
    • pp.9-15
    • /
    • 2015
  • Black cobalt solar selective coatings were prepared by using an electroplating method. The changes in the optical properties of the black cobalt selective coating due to thermal degradation were analyzed by using the Auger electron spectroscopy (AES) and spectrophotometer. The black cobalt selective coating was prepared on a copper substrate by using a synthesized electrolyte with $CoCl_2$ and KSCN at a current density of ${\sim}0.5A/dm^2$ for 45s ~ 60s. Its optical properties were a solar absorptance (${\alpha}$) of the order of 0.80 ~ 0.84 and a thermal emittance (${\epsilon}$) of 0.01. From the AES depth profile analysis of heated sample, thermal degradation of the black cobalt selective coating heated for 33 hours at temperature of $350^{\circ}C$ occurred primarily due to interdiffusion at interface of cobalt and copper substrate. This results were predictable that the ${\alpha}$ decreases due to the thermal oxidation and diffusion.

The High Temperature Oxidation Behavior of Diffusion Aluminized MarM247 Superalloy

  • Matsunaga, Yasuo;Matsuoka, Akira;Nakagawa, Kiyokazu
    • Corrosion Science and Technology
    • /
    • 제2권1호
    • /
    • pp.53-57
    • /
    • 2003
  • The MarM247 based superalloy (8wt.%Cr- 9wt.%Co- 3wt.%Ta- 1.5wt.%Hf- 5.6%wt.Al- 9.5wt.%W- Bal. Ni) specimens were diffusion aluminized by for types of pack cementation methods, and their coating structure and their high temperature oxidation resistance were investigated. The coated specimens treated at 973K in high aluminum concentration pack had a coating layer containing large hafunium rich precipitates, which were originally included in substrate alloy. After the high temperature oxidation test in air containing 30 vol.% $H_2O$ at 1273K ~ 323K, the deep localized corrosion which reached to the substrate were observed along with these hafnium rich precipitates. On the other hand, the coated specimens treated at 1323K using low aluminum concentration pack showed the coating layer without the large hafunium rich precipitates, and after the high temperature oxidation test at 1273K for 1800 ksec, it did not show the deep localized corrosion. The nickel electroplating before the aluminizing forms thick hafnium free area, and its high temperature oxidation resistance were comparable to platinum modified aluminizing coatings at 1273K.