• 제목/요약/키워드: Oxidation Protection Coating

검색결과 17건 처리시간 0.021초

폴리카보실란을 이용하여 탄소단열재에 코팅한 실리콘카바이드 코팅막의 내산화 특성 (Preperation of Silicon Carbide Oxidation Protection Film on Carbon Thermal Insulator Using Polycarbosilane and Its Characterization)

  • 안수빈;이윤주;방정원;신동근;권우택
    • 한국재료학회지
    • /
    • 제27권9호
    • /
    • pp.471-476
    • /
    • 2017
  • In order to improve the high temperature oxidation resistance and lifespan of mat type porous carbon insulation, SiC was coated on carbon insulation by solution coating using polycarbosilane solution, curing in an oxidizing atmosphere at $200^{\circ}C$, and pyrolysis at temperatures up to $1200^{\circ}C$. The SiOC phase formed during the pyrolysis process was converted into SiC crystals as the heat treatment temperature increased, and a SiC coating with a thickness of 10-15 nm was formed at $1600^{\circ}C$. The SiC coated specimen showed a weight reduction of 8.6 % when it was kept in an atmospheric environment of $700^{\circ}C$ for 1 hour. On the other hand, the thermal conductivity was 0.17 W/mK, and no difference between states before and after coating was observed at all.

Research on the Oxidation-Protective Coatings for Carbon/Carbon Composites

  • Li, He-Jun;Fu, Qian-Gang;Huang, Jian-Feng;Zeng, Xie-Rong;Li, Ke-Zhi
    • Carbon letters
    • /
    • 제6권2호
    • /
    • pp.71-78
    • /
    • 2005
  • Anti-oxidation coatings are the key technique for carbon/carbon (C/C) composites used as the thermal structural materials. The microstructure and oxidation behavior of several kinds of high-performance ceramic coatings for C/C composites prepared in Northwestern Polytechnical University were introduced in this paper. It showed that the ceramic coatings such as SiC, Si-$MoSi_2$, SiC-$MoSi_2$, $Al_2O_3$-mullite-SiC and SiC/yttrium silicate/glass coatings possessed excellent oxidation resistance at high temperatures, and some of these coatings were characterized with excellent thermal shock resistance. The SiC-$MoSi_2$ coating system has the best oxidation protective property, which can effectively protect C/C composites from oxidation up to 1973 K. In addition, the protection and failure reasons of some coatings at high temperature were also provided.

  • PDF

The Characteristic Study of Plasma Electrolytic Oxidation in AZ31B Magnesium Alloy

  • Yu, Jae-Yong;Choi, Soon-Don;Yu, Jae-In;Yun, Jae-Gon;Ko, Hoon;Jung, Yeon-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1746-1751
    • /
    • 2015
  • In this study low voltage Plasma Electrolytic Oxidation (PEO) was utilized to eliminate high voltage PEO drawbacks such as high cost, dimensional deformation and porosity. Low voltage PEO produces a thin coating which causes low corrosion resistance. In order to solve such problem, 0.1~0.6M pyrophosphates were added in a bath containing 1.4M NaOH, and 0.35M Na2SiO3. 70 V PEO was conducted at 25℃ for 3 minutes. Chemical composition, morphology and corrosion resistance of the anodized coating were analyzed. The anodized film was composed of MgO, Mg2SiO4, and Mg2O7P2. The morphology of film showed appropriately dense structure and low porosity in the anodized layers. It is found that low voltage Plasma Electrolytic Oxidation in cooperation with phosphating treatment can provide a good corrosion protection for the AZ31B magnesium alloy.

인가전류밀도에 따른 플라즈마 전해산화코팅된 AZ91 마그네슘 합금의 내식성 변화 (Influence of Current Density on Corrosion Properties of AZ91 Mg Alloy Coated by Plasma Electrolytic Oxidation Method)

  • 이병욱;황인준;이재식;고영건;신동혁
    • 대한금속재료학회지
    • /
    • 제49권8호
    • /
    • pp.601-607
    • /
    • 2011
  • The study investigated the influence of current density on the corrosion-protection properties of an AZ91 Mg alloy subjected to plasma electrolytic oxidation coating. The present coatings were carried out under an AC condition at three different current densities, i.e., 100, 150, and $200mA/cm^2$. From microstructural observations, the micro cracks connecting each micro pore were pronounced on the oxide surface of the samples coated at current densities higher than $150mA/cm^2$ since increasing the current density in this study led to an increment in the relative volume fraction of the MgO compound. Based on potentio dynamic polarization and immersion tests, the sample coated at a current density of $100mA/cm^2$ showed superior corrosion resistance.

Growth of SiC Oxidation Protective Coating Layers on graphite substrates Using Single Source Precursors

  • Kim, Myung-Chan;Heo, Cheol-Ho;Park, Jin-Hyo;Park, Seung-Jun;Han, Jeon-Geon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.122-122
    • /
    • 1999
  • Graphite with its advantages of high thermal conductivity, low thermal expansion coefficient, and low elasticity, has been widely used as a structural material for high temperature. However, graphite can easily react with oxygen at even low temperature as 40$0^{\circ}C$, resulting in CO2 formation. In order to apply the graphite to high temperature structural material, therefore, it is necessary to improve its oxidation resistive property. Silicon Carbide (SiC) is a semiconductor material for high-temperature, radiation-resistant, and high power/high frequency electronic devices due to its excellent properties. Conventional chemical vapor deposited SiC films has also been widely used as a coating materials for structural applications because of its outstanding properties such as high thermal conductivity, high microhardness, good chemical resistant for oxidation. Therefore, SiC with similar thermal expansion coefficient as graphite is recently considered to be a g행 candidate material for protective coating operating at high temperature, corrosive, and high-wear environments. Due to large lattice mismatch (~50%), however, it was very difficult to grow thick SiC layer on graphite surface. In theis study, we have deposited thick SiC thin films on graphite substrates at temperature range of 700-85$0^{\circ}C$ using single molecular precursors by both thermal MOCVD and PEMOCVD methods for oxidation protection wear and tribological coating . Two organosilicon compounds such as diethylmethylsilane (EDMS), (Et)2SiH(CH3), and hexamethyldisilane (HMDS),(CH3)Si-Si(CH3)3, were utilized as single source precursors, and hydrogen and Ar were used as a bubbler and carrier gas. Polycrystalline cubic SiC protective layers in [110] direction were successfully grown on graphite substrates at temperature as low as 80$0^{\circ}C$ from HMDS by PEMOCVD. In the case of thermal MOCVD, on the other hand, only amorphous SiC layers were obtained with either HMDS or DMS at 85$0^{\circ}C$. We compared the difference of crystal quality and physical properties of the PEMOCVD was highly effective process in improving the characteristics of the a SiC protective layers grown by thermal MOCVD and PEMOCVD method and confirmed that PEMOCVD was highly effective process in improving the characteristics of the SiC layer properties compared to those grown by thermal MOCVD. The as-grown samples were characterized in situ with OES and RGA and ex situ with XRD, XPS, and SEM. The mechanical and oxidation-resistant properties have been checked. The optimum SiC film was obtained at 85$0^{\circ}C$ and RF power of 200W. The maximum deposition rate and microhardness are 2$mu extrm{m}$/h and 4,336kg/mm2 Hv, respectively. The hardness was strongly influenced with the stoichiometry of SiC protective layers.

  • PDF

이온 플레이팅법에 의한 내식 박막의 제작과 부식방식 메카니즘 (Preparation of corrosion-resistive thin films by ion plating method and their corrosion protection mechanism)

  • 이경희;배일용;김기준;문경만;이명훈
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.285-286
    • /
    • 2006
  • Magnesium is the lightest of all the structural metals having density of 1.74. It is approximately 2/3 lighter than aluminium, l/4 lighter than titanium alloy and 1/5 lighter than iron. Among the light-weight alloys, magnesium and its alloys show a good possibility for high performance aerospace and automotive applications, however the widespread use of magnesium alloys has been limited mainly by its poor oxidation and corrosion resistance. In this work, corrosion-resistive thin films were prepared onto the magnesium alloy substrate(AZ91D) by environmental friendly coating technique, ion plating method. And their corrosion protection mechanism were analyzed.

  • PDF

Plasma-Sprayed $Al_2O_3-SiO_2$ Multi-Oxide Films on Stainless Steel Substrate

  • Korobova, N.;Soh, Deawha
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2000년도 추계학술대회논문집
    • /
    • pp.116-119
    • /
    • 2000
  • The advantage of plasma-sprayed coating is their good resistance against thermal shock due to the porous state of the coated layer with a consequently low Youngs modulus. However, the existence of many pores with a bimodal distribution and a laminar structure in the coating reduces coating strength and oxidation protection of the base metals. In order to counteract these problems, there have been many efforts to obtain dense coatings by spraying under low pressure or vacuum and by controlling particle size and morphology of the spraying materials. The aim of the present study is to survey the effects of the HIP treatment between 1100 and 130$0^{\circ}C$ on plasma-sprayed oxide coating of A1$_2$O$_3$, A1$_2$O$_3$-SiO$_2$on the metal substrate (type C18N10T stainless steel). These effects were characterized by phase identification, Vickers hardness measurement, and tensile test before and after HIPing. These results show that high-pressure treatment has an advantage for improving adhesive strength and Vickers hardness of plasma-sprayed coatings.

  • PDF

Plasma-Sprayed $Al_{2}O_{3}-SiO_{2}$ Multi-Oxide Films on Stainless Steel Substrate

  • Korobova, N.;Soh, Deawha
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.116-119
    • /
    • 2000
  • The advantage of plasma-sprayed coating is their good resistance against thermal shock due to the porous state of the coated layer with a consequently low Youngs modules. However, the existence of many pores with a bimodal distribution and a laminar structure in the coating reduces coating strength and oxidation protection of the base metals. In order to counteract these problems, there have been many efforts to obtain dense coatings by spraying under low pressure or vacuum and by controlling particle size and morphology of the spraying materials. The aim of the present study is to survey the effects of the HIP treatment between 1100 and 130$0^{\circ}C$ on plasma-sprayed oxide coating of A1$_2$O$_3$, A1$_2$O$_3$-SiO$_2$ on the metal substrate (type C18N10T stainless steel). These effects were characterized by phase identification, Vickers hardness measurement, and tensile test before and after HIPing, These results show that high-pressure treatment has an advantage for improving adhesive strength and Vickers hardness of plasma- sprayed coatings.

  • PDF

고분자 물질의 표면 보호를 위한 자외선 경화 도료의 응용 (Application of UV Curable Coating for the Surface Protection of Polymeric Materials: PVC and Polystyrene)

  • 문명준;박진환;이근대;서차수;김종래
    • 공업화학
    • /
    • 제2권2호
    • /
    • pp.175-184
    • /
    • 1991
  • PVC 와 Polystyren 과 같은 고분자가 자외선에 노출될 때 이들 표면을 보호하고, 물성을 유지하기 위해서 자외선 경화 도료를 도장하지만, PVC 는 epoxy acrylate 에 대해서, 그리고 Polystyren 은 대부분의 UV도료에 부착력이 약하므로, 반응희석제의 조성을 변화시키거나, 다관능기 acrylate를 표면에 photografting 시키거나, 표면을 광화학적으로 활성화시켜 부착력을 향상시킴을 목적으로 하였다. 미리 침투시킨 광개시제에 의한 grafting이나 표면 활성화로 부착력은 현저히 증가하였고, 각 희석제에 있어 Tripropylene glycol diacrylate는 유연성 향상과 부착력 증가를 가져오나, 황변 현상과 표면 산화에 의한 경화 밀도의 증가로 grafting을 제외한 다른 도장 방법은 시간이 지남에 따라 도막의 부착력이 감소하였다. 여기에 비해 Trimethylol propane triacrylate 는 원래 다관능기에 의해 높은 경화 밀도를 가지고 이에 따른 단단한 도막 때문에 부착력에 문제가 있으나, 두가지 도장법에서는 오히려 다관능기에 의한 화학 결합으로 부착력이 향상되었다. 그리고, 고분자 표면의 표면 에너지를 활성화를 통해 증가시킴으로 해서 UV 도료의 상용성 문제를 grafting 과 표면 활성화를 통해 해결해 도료 배합의 다양화와 기능화를 가져올 것이 기대된다.

  • PDF

Pure inorganic protective silica coating on stainless steel prepared at low heat treatment temperature

  • 황태진
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.6.2-6.2
    • /
    • 2010
  • Stainless steel is widely known to have superior corrosion properties. However, in some harsh conditions it still suffers various kinds of corrosions such as galvanic corrosion, pitting corrosion, intergranular corrosion, chloride stress corrosion cracking, and etc. For the corrosion protection of stainless steel, the ceramic coatings such as protective silica film can be used. The sol-gel coating technique for the silica film has been extensively studied especially because of the cost effectiveness. It has been proved that silica can improve the oxidation and the acidic corrosion resistance of metal surface in a wide range of temperatures due to its high heat and chemical resistance. However, in the sol-gel coating process there used to engage a heat treatment at an elevated temperature like $500^{\circ}C{\sim}600^{\circ}C$ where cracks in the silica film would be formed because of the thermal expansion mismatch with the metal. The cracks and pores of the film would deteriorate the corrosion resistance. When the heat treatment temperature is reduced while keeping the adhesion and the density of the film, it could possibly give the enhanced corrosion resistance. In this respect, inorganic protective silica film was tried on the surface of stainless steel using a sol-gel chemical route where silica nanoparticles, tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) were used. Silica nanoparticles with different sizes were mixed and then the film was deposited on the stainless steel substrate. It was intended by mixing the small and the large particles at the same time a sufficient consolidation of the film is possible because of the high surface activity of the small nanoparticles and a modest silica film is obtained with a low temperature heat treatment at as low as $200^{\circ}C$. The prepared film showed enhanced adhesion when compared with a silica film without nanoparticle addition. The films also showed improved protect ability against corrosion.

  • PDF